Project description:Purpose: We aim to reveal maize transcriptomic changes with water and salinity treatment. Methods: RNA-seq were used to reveal transcriptome of maize biological replicates with water and salinity treatment. Results: Differentially expressed transcripts were identified by the comparison of biological replicates with water and salinity treatment. Conclusions: We identified differentially expressed genes in respone to salinity treatment in maize.
Project description:In this study, we aim to present a global view of transcriptome dynamics during salinity stress in different chickpea genotypes. We generated about 600 million high-quality reads from 16 libraries (control and stress samples for two chickpea genotypes for salinity stress at two developmental stages) using Illumina high-throughput sequencing platform. We mapped the reads to the kabuli chickpea genome for estimation of their transcript abundance in different tissue samples. The transcriptome dynamics was studied by differential gene expression analyses between stress treatment and control sample for each genotype.
Project description:Bisulphite sequencing of salinity sensitive and salinity tolerant chickpea genotypes during salinity stress response using Illumina platform has been performed. At least 195 million reads in bisulphite sequencing were generated in each sample. Methylated cytosines in each sample were identified for their genomic location and sequence context.
Project description:Prochlorococcus is an obligate marine microorganism which are dominant autotroph in tropical and subtropical central oceans. However, what is the low salinity boundary and how Prochlorococcus would response to low salinity exposure is still unknown. In this study, we first tested the growing salinity range of two Prochlorococcus strains, NATL1A and MED4, and then compared the global transcriptome of their low salinity acclimated cells and cells growing in normal seawater salinity. We found that MED4 could be acclimated in the lowest salinity of 25% and NATL1A could be acclimated in the lowest salinity of 28%. Measurement of the effective quantum yield of PSII photochemistry (Fv/Fm) indicated that both strains were stressed when growing in salinity lower than 34%. The transcriptomic response of NATL1A and MED4 were approximately different, with much more genes having changed transcript abundance in NATL1A than in MED4. To cope with low salinity, NATL1A downregulated the transcript of most genes involved in translation, ribosomal structure and biogenesis, while MED4 upregulated those genes. Moreover, low salinity acclimated NATL1A cells suppressed ATP-producing genes and induced the expression of photosynthesis related genes, while low salinity acclimated MED4 upregulated ATP-producing genes and downregulated photosynthesis related genes. These results indicate that the response to low salinity stress of different Prochlorococcus strains could be distinct. The study provided the first glimpse into the growing salinity range of Prochlorococcus cells and their global gene expression changes due to low salinity stress.
Project description:Yield losses as a result of abiotic stress factors present a significant challenge for the future of global food production. While breeding technologies provide potential to combat negative stress-mediated outcomes over time, interventions which act to prime plant tolerance to stress, via the use of phytohormone-based elicitors for example, could act as a valuable tool for crop protection. However, the translation of fundamental biology into functioning solution is often constrained by knowledge-gaps. Photosynthetic and transcriptomic responses were characterised in young tomato (Solanum lycopersicum) seedlings in response to pre-treatment with a new plant health activator technology, ‘Alethea,’ followed by a subsequent 100 mM salinity stress. Salinity treatment led to a maximal 47% reduction in net photosynthetic rate 8 d following NaCl treatment. In Alethea pre-treated seedlings, sensitivity to salinity stress was markedly reduced during the experimental period. Microarray analysis of leaf transcriptional responses showed that while salinity stress and Alethea individually impacted on largely non-overlapping, distinct groups of genes, Alethea pre-treatment substantially modified the response to salinity. Alethea affected the expression of genes related to biotic stress, ethylene signalling, cell wall synthesis, redox signalling and photosynthetic processes. Since Alethea had clear effects on photosynthesis/chloroplastic function at the physiological and molecular levels, we also investigated the ability of Alethea to protect plants against methyl viologen, a potent generator of oxidative stress in chloroplasts. Alethea pre-treatment produced dramatic reductions in visible foliar necrosis caused by methyl viologen compared with non-primed controls.
Project description:The invasive marine mussel Mytilus galloprovincialis has displaced the native congener Mytilus trossulus from central and southern California, but the native species remains dominant at more northerly sites that have high levels of freshwater input. To determine the extent to which interspecific differences in physiological tolerance to low salinity might explain limits to the invasive species’ biogeography, we used an oligonucleotide microarray to compare the transcriptional responses of these two species to an acute decrease in salinity. Among 6,777 genes on the microarray, 117 genes showed significant changes that were similar between species, and 12 genes showed significant species-specific responses to salinity stress. Osmoregulation and cell cycle control were important aspects of the shared transcriptomic response to salinity stress, whereas the genes with species-specific expression patterns were involved in mRNA splicing, polyamine synthesis, exocytosis, translation, cell adhesion, and cell signaling. Forty-five genes that changed expression significantly during salinity stress also changed expression during heat stress, but the direction of change in expression was typically opposite for the two forms of stress. These results (i) provide insights into the role of changes in gene expression in establishing physiological tolerance to acute decreases in salinity, and (ii) indicate that transcriptomic differences between M. galloprovincialis and M. trossulus in response to salinity stress are subtle and involve only a minor fraction of the overall suite of gene regulatory responses.