Project description:The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi - identification of families of candidate effectors
Project description:We have identified de novo copy number variations (CNVs) generated in ageing bulls. Blood samples from eight bulls were collected and SNP arrayed in a prospective design over 30 months allowing us to differentiate de novo CNVs from constant CNVs that are present throughout the sampling period. Quite remarkably, the total number of CNVs doubled over the 30-month period, as we observed an almost equal number of de novo and constant CNVs (107 vs. 111 or 49% vs. 51%, respectively). Twice as many de novo CNVs emerged during the second half of the sampling schedule as in the first part. It suggests a dynamic generation of de novo CNVs in the bovine genome that becomes more frequent, as the age of the animal progresses. In a second experiment de novo CNVs were detected through in vitro ageing of bovine fibroblasts by sampling passage #5, #15 and #25. De novo CNVs also became more frequent, but the proportion of them was only ~25% of the total number of CNVs (21 vs. 64). Temporal generation of de novo CNVs resulted in increasing genome coverage. Genes and quantitative trait loci overlapping de novo CNVs were further investigated for ageing related functions.
Project description:In mammals, the acquisition of the germline from the soma provides the germline with an essential challenge, the necessity to erase and reset genomic methylation. In the male germline RNA-directed DNA methylation silences young active transposable elements (TEs). The PIWI protein MIWI2 (PIWIL4) and its associated PIWI-interacting RNAs (piRNAs) are proposed to tether MIWI2 to nascent TE transcripts and instruct DNA methylation. The mechanism by which MIWI2 directs de novo TE methylation is poorly understood but central to the immortality of the germline. Here, we define the interactome of MIWI2 in foetal gonocytes that are undergoing de novo genome methylation and identify a novel MIWI2-associated factor, SPOCD1, that is essential for young TE methylation and silencing. The loss of Spocd1 in mice results in male specific infertility and does not impact on piRNA biogenesis nor localization of MIWI2 to the nucleus. SPOCD1 is a nuclear protein and its expression is restricted to the period of de novo genome methylation. We found SPOCD1 co-purified in vivo with DNMT3L and DNMT3A, components of the de novo methylation machinery as well as constituents of the NURD and BAF chromatin remodelling complexes. We propose a model whereby tethering of MIWI2 to a nascent TE transcript recruits repressive chromatin remodelling activities and the de novo methylation apparatus through its association with SPOCD1. In summary, we have identified a novel and essential executor of mammalian piRNA-directed DNA methylation.
Project description:This is the validation data for candidate de novo CNV calls made in the asthma trios by Itsara et al., Genome Research 2010. In this study, de novo CNV calls in the asthma data set were initially made with Illumina 550K SNP arrays. Validation was performed with custom Nimblegen array CGH for which DNA was available. de novo CNVs would be expected to validate in the child of each trio tested, and not be detected in either parent.