Project description:The outcomes of this project are to identify bioactive marine natural products from Irish marine life. This specific dataset contains LC-MS/MS spectra from tissue of the marine sponge Tethya citrina. Files are part of the Metabolights dataset MTBLS874.
Project description:Microbial diversity and spatial distribution of the diversity within tissue of the marine sponge Tethya californiana was analyzed based on 16S rRNA gene sequences. One candidate division and nine bacterial phyla were detected, including members of all five subdivisions of Proteobacteria. Moreover, chloroplast-derived Stramenopiles- and Rhodophyta-affiliated 16S rRNA gene sequences were found and Stramenopiles represented the most abundant clones (30%) in the clone library. On the phylum-level, the microbial fingerprint of T. californiana showed a similar pattern as its Mediterranean relative T. aurantium. An interesting difference was that Cyanobacteria that were abundantly present in T. aurantium were not found in T. californiana, but that the latter sponges harbored phototrophic Stramenopiles instead. Surprisingly, the phototrophic microorganisms were evenly distributed over the inner and outer parts of the sponge tissue, which implies that they also reside in regions without direct light exposure. The other phyla were also present in both the outer cortex and the mesohyl of the sponges. These results were confirmed by analysis on the operational taxonomic unit level. This leads to the conclusion that from a qualitative point of view, spatial distribution of microorganisms in T. californiana tissue is quite homogeneous. Thirty-two percent of the operational taxonomic units shared less than 95% similarity with any other known sequence. This indicates that marine sponges are a rich source of previously undetected microbial life.
Project description:The complete mitochondrial genome of Tethya sp. was studied. This is the second complete mitochondrial report on the family Tethyidae. The mitochondrial genome of Tethya sp. is 20,582 bp in length, containing 14 protein-coding genes and 25 tRNA genes, with 2 rRNA genes. Our phylogenetic result suggested that Tethya sp. converged well with Tethya actinia, which further verified the morphological result. We anticipate our study to shed light on future molecular studies of demosponges.