Project description:To reveal distinct transcriptomes associated with spermatogonial stem cell renewal vs. initiation of differentiation, single-cell transcriptomes from P6 ID4-EGFP+ spermatogonia (sorted for brightest or dimmest) or unselected testis cells were used for Drop-Seq analysis. The GFP-bright and dim phenotypes exhibit distinct fates when assayed by transplantation, with ID4-EGFPbright cells highly enriched for SSCs, and ID4-EGFPdim cells enriched for progenitors. We used the 10x Genomics Chromium (a commercial Drop-Seq variant) to perform single-cell RNA-seq
Project description:To reveal distinct transcriptomes associated with spermatogonial stem cell renewal vs. initiation of differentiation, single-cell transcriptomes from P6 ID4-EGFP+ spermatogonia were subdivided into subpopulations that displayed distinct fates when assayed by transplantation, with ID4-EGFPbright cells highly enriched for SSCs, and ID4-EGFPdim cells enriched for progenitors. We used the Fluidigm C1 instrument to capture individual spermatogonia for SMART-Seq2 single-cell RNA-seq.
Project description:P6 ID4-EGFP+ undifferentiated spermatogonia, including those stained robustly (high) or weakly (low) for TSPAN8 were isolated by FACS.
Project description:To reveal distinct transcriptome changes among ID4-EGFP-bright adult mouse spermatogonia associated with mTORC1 activity, single-cell transcriptomes were generated from GFP-bright/CD9-bright spermatogonia from adult mice in three groups: control (untreated), 2 days of Rapamycin treatment (Rapamycin) and 2 days Rapamycin plus 1 day washout (Rapamycin_Release). Based on transplantation studies performed previously, ID4-EGFPbright cells are highly enriched for SSCs. We used the 10x Genomics Chromium to perform single-cell RNA-seq.
Project description:To reveal distinct transcriptomes associated with spermatogonial stem cell renewal vs. initiation of differentiation, single-cell transcriptomes from Adult ID4-EGFP+ spermatogonia were subdivided into subpopulations that displayed distinct fates when assayed by transplantation, with ID4-EGFPbright cells highly enriched for SSCs, and ID4-EGFPdim cells enriched for progenitors. We used the Fluidigm C1 instrument to capture individual spermatogonia for SMART-Seq2 single-cell RNA-seq.
Project description:Mice that constitutively overexpress ID4 in germ cells have impaired spermatogenic lineage development. The transcriptome of ID4-GFP+ spermatogonia from testes of ID4 overexpression animals was compared to the ID4-GFP+ population from controls
Project description:To reveal distinct transcriptomes associated with various spermatogenic cells, including spermatogonial stem cells and all of their subsequent progeny, single-cell transcriptomes from Adult ID4-EGFP+ spermatogonia (sorted for brightest or dimmest), StaPut-enriched spermatocytes and spermatids, or unselected steady-state spermatogenic cells were used for 10x Genomics analysis. The GFP-bright and dim phenotypes exhibit distinct fates when assayed by transplantation, with ID4-EGFPbright cells highly enriched for SSCs, and ID4-EGFPdim cells enriched for progenitors. We used the 10x Genomics Chromium (Drop-Seq) to perform single-cell RNA-seq
Project description:Spermatogonia expressing the highest levels of ID4 (ID4-GFP Bright) represent a population highly enriched for spermatogonial stem cells (SSC) while those expressing lower levels (ID4-GFP Dim) are the putative immediate progenitors. Comparing the transcriptome of these populations can provide insight into the SSC to progenitor transition.