Project description:Cigarette smoking is associated with reduced risk of developing Parkinson’s disease (PD). To identify genes that interact with nicotine/smoking, we performed hypothesis-free genome-wide experiments in a paraquat-induced Drosophila model and in a case-control study of PD. We demonstrated that nicotine extends life-span in paraquat-treated Drosophila (P=4E-30). Brain tissue from flies treated with combinations of paraquat and nicotine revealed elevated expression of CG14691 with paraquat which was restored with nicotine co-treatment (P(interaction)=2E-11, P(FDR-adjusted)=4E-7). Independently, variants in the 5’ region of SV2C, a human ortholog of CG14691, gave the strongest signal for interaction with smoking (P(interaction)=9E-8). The effect of smoking on PD risk varied six-fold by SV2C genotype (P(heterogeneity)=4E-10). Moreover, SV2C variants identified here were associated with SVC2 gene-expression in the HapMap data. Present results suggest synaptic vesicle protein SV2C plays a role in PD pathogenesis, and that the SV2C genotype may be useful for clinical trials of nicotine for treating PD.
Project description:Cigarette smoking is associated with reduced risk of developing Parkinson’s disease (PD). To identify genes that interact with nicotine/smoking, we performed hypothesis-free genome-wide experiments in a paraquat-induced Drosophila model and in a case-control study of PD. We demonstrated that nicotine extends life-span in paraquat-treated Drosophila (P=4E-30). Brain tissue from flies treated with combinations of paraquat and nicotine revealed elevated expression of CG14691 with paraquat which was restored with nicotine co-treatment (P(interaction)=2E-11, P(FDR-adjusted)=4E-7). Independently, variants in the 5’ region of SV2C, a human ortholog of CG14691, gave the strongest signal for interaction with smoking (P(interaction)=9E-8). The effect of smoking on PD risk varied six-fold by SV2C genotype (P(heterogeneity)=4E-10). Moreover, SV2C variants identified here were associated with SVC2 gene-expression in the HapMap data. Present results suggest synaptic vesicle protein SV2C plays a role in PD pathogenesis, and that the SV2C genotype may be useful for clinical trials of nicotine for treating PD. Drosophila female heads were dissected after exposure to plain food, food with paraquat, food with nicotine, or food with both paraquat and nicotine, and genome-wide expression was quantified using Affymetrix microarrays. 20 heads were pooled per replicate, with each treatment in triplicate, and all flies were dissected at the same timepoint, after 10 days of pretreatment (with 0.1 mg/ml nicotine or no nicotine, depending on treatment group), and then a further 6 days of treatment with either 5 mM paraquat or no paraquat, continuing on the pretreatment dose of nicotine. One biological replicate in the paraquat-only group showed RNA degradation and was not included in the normalization or subsequent analyses.
Project description:Transcriptomic profiling using Drosophila heads reveals early gene expression responses to transient paraquat exposure. We performed RNAseq profiling of heads from the wild type (WT) Drosophila strain, Canton S (males only), that were fed either 2.5% sucrose (control) or 5 mM PQ in 2.5% sucrose for 12 h.
Project description:To address the roles of PML bodies in transcription under stress condition, we performed ALaP-seq and RNA-seq with paraquat treated mESCs.
Project description:We used microarrays to detail Arabidopsis gene expression in response to paraquat, a herbicide that acts as a terminal oxidant of photosystem I that in the light leads to the enhanced generation of superoxide and hydrogen peroxide inside plastids. Within a few hours after paraquat treatment changes in nuclear gene expression occur. Distinct sets of genes were activated that were different from those induced by another reactive oxygen species, singlet oxygen. Keywords: Time course
Project description:Exposure to Paraquat and RNA interference knockdown of mitochondrial superoxide dismutase (Sod2) are known to result in significant lifespan reduction, locomotor dysfunction, and mitochondrial degeneration in Drosophila melanogaster. Both perturbations increase the flux of superoxide, a progenitor reactive oxygen species, but the molecular underpinnings of the resulting phenotypes are poorly understood. Improved understanding of such processes could lead to advances in the treatment of numerous age-related disorders. Superoxide toxicity can act through protein carbonylation. Analysis of carbonylated proteins is attractive since reactive carbonyl groups are not present in the twenty canonical amino acids and are amenable to labeling and enrichment strategies. Here, carbonylated proteins were labeled with biotin hydrazide and enriched on streptavidin-coated beads. On-bead digestion was used to release carbonylated protein peptides, with relative abundance ratios versus controls obtained using the iTRAQ mass spectrometry-based proteomics approach. While Paraquat exposure and Sod2 knockdown have similar phenotypes, differences in protein carbonylation were anticipated because Paraquat exposure was expected to increase the concentration of superoxide throughout the cell while Sod2 knockdown was only expected to raise the concentration of superoxide in the mitochondrial matrix. Paraquat exposure resulted in widespread increases in carbonylated protein relative abundance: the median Paraquat-exposed to control carbonylated protein relative abundance ratio was 1.53. For Sod2 knockdown, in contrast, the median carbonylated protein relative abundance ratios were 1.13 versus the RNA interference driver control and 1.05 versus the RNA interference transgene control. However, some proteins did show large increases in carbonylated protein relative abundance on Sod2 knockdown, most notably cytochrome c oxidase subunit Vb, possibly providing some indication of the molecular basis of the Sod2-knockdown phenotype.
Project description:Transcriptional profiling of A. oleivorans DR1 cells in the presence of paraquat and phenazine methosulfate To identify genes involved in oxidative stress response in A. oleivorans DR1, cells were grown to exponential phase (OD600 ~0.4) and treated with paraquat (1 mM) and phenazine methosulfate (200 μM) over a period of 15 min. Total RNA was extracted using an RNeasy Mini kit (Qiagen, USA) following the manufacturer's instructions.
Project description:The diversity of cell types and regulatory states in the brain, and how these change during ageing, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting. Our data shows high granularity and identifies a wide range of cell types. Gene network analyses using SCENIC revealed regulatory heterogeneity linked to energy consumption. During ageing, RNA content declines exponentially without affecting neuronal identity in old brains. This single-cell brain atlas covers nearly all cells in the normal brain and provides the tools to study cellular diversity alongside other Drosophila and mammalian single-cell datasets in our unique single-cell analysis platform. These results allow comprehensive exploration of all transcriptional states of an entire ageing brain.