Project description:Streptomyces sp. M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. Our results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. This is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.
Project description:JHM80 strain was obtained by adaptive evolution of Methylomonas sp. DH-1 strain against 8.0 g/L of lactate. The tolerance against lactate of JHM80 was obtained by the overexpression of watR (weak acid tolerance regulator). In order to discover the target genes of WatR, FLAG epitope tag was added to WatR of JHM80 strain and ChIP-seq was performed.
Project description:We integrated genomic and transcriptomic analysis of a newly isolated obligate Methylomonas sp. DH-1 grown on methane and methanol. Comparative transcriptomic analysis between methane and methanol as a sole carbon source revealed different transcriptional responses of Methylomonas sp. DH-1, especially in C1 assimilation, the secondary metabolites pathways and the oxidative stress related genes
Project description:This study aimed to investigate the variations in the protein composition of Streptomyces sp. PU10 when cultivated with either Impranil (polyestere-polyurethane) or glucose as the carbon source. We analyzed both the intracellular and extracellular protein fractions to gain insights into the intricate processes involving PU degradation, intermediate metabolic pathways in PU degradation, and the connection between primary and secondary metabolism within Streptomyces sp. PU10.