Project description:Tetrameric hemoglobins (Hbs) are prototypical systems for the investigations of fundamental properties of proteins. Although the structure of these proteins has been known for nearly sixty years, there are many aspects related to their function/structure that are still obscure. Here, we report the crystal structure of a carbonmonoxy form of the Hb isolated from the sub-Antarctic notothenioid fish Eleginops maclovinus characterised by either rare or unique features. In particular, the distal site of the α chain results to be very unusual since the distal His is displaced from its canonical position. This displacement is coupled with a shortening of the highly conserved E helix and the formation of novel interactions at tertiary structure level. Interestingly, the quaternary structure is closer to the T-deoxy state of Hbs than to the R-state despite the full coordination of all chains. Notably, these peculiar structural features provide a rationale for some spectroscopic properties exhibited by the protein in solution. Finally, this unexpected structural plasticity of the heme distal side has been associated with specific sequence signatures of various Hbs.
Project description:Fluctuations in ambient temperature along with the presence of pathogenic microorganisms can induce important cellular changes that alter the homeostasis of ectothermic fish. The aim of this study was to evaluate how sudden or gradual changes in environmental temperature together with the administration of Piscirickettsia salmonis modulate the transcription of genes involved in cellular stress response in the liver of Eleginops maclovinus. Fish were subjected to the following experimental conditions in duplicate: C- 12 °C: Injection only with culture medium, C+ 12 °C: Injection with P. salmonis, AM 18 °C: Injection only with culture medium under acclimation at 18 °C, AB 18 °C: Injection with P. salmonis under acclimation at 18 °C, SM 18 °C: Injection only with culture medium and thermal shock at 18 °C and SB 18 °C: Injection with P. salmonis and thermal shock at 18 °C and sampling at 4-, 8-, 12-, 16- and 20-day post injection (dpi). The genes implied in the heat shock response (HSP70, HSC70, HSP90, and GRP78), apoptosis pathway (BAX and SMAC/Diablo), ubiquitination (E2, E3, ubiquitin, and CHIP), and 26 proteasome complex (PSMB7, PSMC1, and PSMA2) showed expression profiles dependent on time and type of injection applied. All the genes greatly increased their expression levels at day 16 and showed moderate increases at day 20, except for PSMA2 which showed a higher increase between 4- and 12-day post challenges. Our results suggest that the changes observed at the final days of the experiment are due to temperature more than P. salmonis.
Project description:Patagonia is an understudied area, especially when it comes to population genomic studies with relevance to fishery management. However, the dynamic and heterogeneous landscape in this area can harbor an important but cryptic genetic population structure. Once such information is revealed, it can be integrated into the management of infrequently investigated species. Eleginops maclovinus is a protandrous hermaphrodite species with economic importance for local communities that are currently managed as a single genetic unit. In this study, we sampled five locations distributed across a salinity cline from Northern Patagonia to investigate the genetic population structure of E. maclovinus. We used restriction site-associated DNA (RAD) sequencing and outlier tests to obtain neutral and adaptive loci, using FST and GEA approaches. We identified a spatial pattern of structuration with gene flow and spatial selection by environmental association. Neutral and adaptive loci showed two and three genetic groups, respectively. The effective population sizes estimated ranged from 572 (Chepu) to 14,454 (Chaitén) and were influenced more by locality than by salinity cline. We found loci putatively associated with salinity suggesting that salinity may act as a selective driver in E. maclovinus populations. These results suggest a complex interaction between genetic drift, gene flow, and natural selection in this area. Our findings also suggest several evolutionary significant units in this area, and the information should be integrated into the management of this species. We discussed the significance of these results for fishery management and suggest future directions to improve our understanding of how E. maclovinus has adapted to the dynamic waters of Northern Patagonia.
Project description:The genetic relationships between the Pacific and the Atlantic populations of marine coastal biota in Southern South America have been analyzed in few studies, most of them relying on a single mitochondrial locus. We analyzed 10 polymorphic microsatellite loci, isolated from a dinucleotide-enriched Eleginops maclovinus genomic library, in a total of 240 individuals (48 from each of 5 sampled sites: 2 Atlantic, 2 Pacific and 1 in Beagle Channel). The results were contrasted against a previous work on the same species with mitochondrial DNA (mtDNA). Observed heterozygosity within localities ranged from 0.85 to 0.88 with the highest overall number of alleles observed at the northernmost locality on the Pacific side (Concepción), but no clear geographic pattern arose from the data. On the other hand, the number of private alleles was negatively correlated with latitude (Spearman's rs test, P=0.017). Among-population variance was low but significant (1.35%; P<0.0001, analysis of molecular variance (AMOVA)) and low genetic differentiation between populations was observed (pairwise FST values ranged from 0 to 0.021). A Mantel test revealed a significant correlation between geographic distances and FST (r=0.56, P=0.047). This could be partially accounted by the Atlantic versus Pacific population differentiation detected in three different analyses (STRUCTURE, SAMOVA (Spatial Analysis of MOlecular VAriance) and a population phylogeny). The observed pattern is compatible with a history of separation into two glacial refugia that was better captured by the multilocus microsatellite data than by the mtDNA analysis.
| S-EPMC4806693 | biostudies-literature
Project description:Neutral and adaptive loci in Eleginops maclovinus from North Patagonia
Project description:The basal South American notothenioid Eleginops maclovinus (Patagonia blennie or róbalo) occupies a uniquely important phylogenetic position in Notothenioidei as the singular closest sister species to the Antarctic cryonotothenioid fishes. Its genome and the traits encoded therein would be the nearest representatives of the temperate ancestor from which the Antarctic clade arose, providing an ancestral reference for deducing polar derived changes. In this study, we generated a gene- and chromosome-complete assembly of the E. maclovinus genome using long read sequencing and HiC scaffolding. We compared its genome architecture with the more basally divergent Cottoperca gobio and the derived genomes of nine cryonotothenioids representing all five Antarctic families. We also reconstructed a notothenioid phylogeny using 2918 proteins of single-copy orthologous genes from these genomes that reaffirmed E. maclovinus' phylogenetic position. We additionally curated E. maclovinus' repertoire of circadian rhythm genes, ascertained their functionality by transcriptome sequencing, and compared its pattern of gene retention with C. gobio and the derived cryonotothenioids. Through reconstructing circadian gene trees, we also assessed the potential role of the retained genes in cryonotothenioids by referencing to the functions of the human orthologs. Our results found E. maclovinus to share greater conservation with the Antarctic clade, solidifying its evolutionary status as the direct sister and best suited ancestral proxy of cryonotothenioids. The high-quality genome of E. maclovinus will facilitate inquiries into cold derived traits in temperate to polar evolution, and conversely on the paths of readaptation to non-freezing habitats in various secondarily temperate cryonotothenioids through comparative genomic analyses.