Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus CIRM-BRFM310 grows well on both coniferous and deciduous wood. In the present study we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks.
Project description:Fomitiporia mediterranea (Fmed) is one of the main fungal species found in grapevine wood rot, also called “amadou”, one of the most typical symptoms of grapevine trunk disease Esca. This fungus is functionally classified as a white-rot, able to degrade all wood structure polymers, i.e., hemicelluloses, cellulose, and the most recalcitrant component, lignin. Specific enzymes are secreted by the fungus to degrade those components, namely carbohydrate active enzymes for hemicelluloses and cellulose, which can be highly specific for given polysaccharide, and peroxidases, which enable white-rot to degrade lignin, with specificities relating to lignin composition as well. Furthermore, besides polymers, a highly diverse set of metabolites often associated with antifungal activities is found in wood, this set differing among the various wood species. Wood decayers possess the ability to detoxify these specific extractives and this ability could reflect the adaptation of these fungi to their specific environment. The aim of this study is to better understand the molecular mechanisms used by Fmed to degrade wood structure, and in particular its potential adaptation to grapevine wood. To do so, Fmed was cultivated on sawdust from different origins: grapevine, beech, and spruce. Carbon mineralization rate, mass loss, wood structure polymers contents, targeted metabolites and secreted proteins were measured. We used the well-known white-rot model Trametes versicolor for comparison. Whereas no significant degradation was observed with spruce, a higher mass loss was measured on Fmed grapevine culture compared to beech culture. Moreover, on both substrates, a simultaneous degradation pattern and the degradation of wood extractives were demonstrated, and proteomic analyses identified a relative overproduction of oxidoreductases involved in lignin and extractive degradation on grapevine cultures, and only few differences in carbohydrate active enzymes. These results could explain at least partially the adaptation of Fmed to grapevine wood structural composition compared to other wood species and suggest that other biotic and abiotic factors should be considered to fully understand the potential adaptation of Fmed to its ecological niche.
Project description:The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study we evaluated how well the white-rot fungus Dichomitus squalens has adapted to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analysed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant polysaccharides not present in its natural habitat.
Project description:The brown rot wood decay fungus, Fomitopsis pinicola strain FP-58527, was cultivated for five dayes in media containing ground Populus tremuloides, Pinus taeda or Picea glauca wood as sole carbon source. Extracellular proteomic component was extracted and analyzed by LC-MS/MS.
Project description:Methionine oxydation level was monitored by tandem mass spectrometry for secreted proteins and intracellular proteins from the white-rot fungus Pycnoporus cinnabarinus grown on aspen wood.
Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. In order to improve our understanding on the enzymatic mechanisms leading to lignocellulose breakdown, we analysed the early response of the white-rot fungus Pycnoporus coccineus CIRM-BRFM310 to various lignocellulosic substrates at two time points; Day 3 and Day 7.
Project description:Wood-degrading fungi vary in their strategies for deconstructing wood, and their competitive successes shape the rate and fate of carbon released from wood, Earth’s largest pool of aboveground terrestrial carbon. In this study, one-on-one interspecific interactions between two model brown rot (carbohydrate-selective) fungi, Gloeophyllum trabeum and Rhodonia (Postia) placenta, were studied on wood wafers where a clearly resolved interaction zone (IZ) could be generated, reproducibly. Comparative RNAseq and proteomics between the IZ and non-interacting hyphae of each species identified combative strategies for each fungus. Glycoside hydrolases were a relatively smaller portion of the interaction secretome compared to non-interacting hyphae. The interaction zone showed higher pectinase specific activity than all other sampling locations, and higher laminarinase specific activity (branched β‐glucan proxy) was seen in the IZ secretome relative to equivalent hyphae in single‐species cultures. Our efforts also identified two distinct competitive strategies in these two fungi with a shared nutritional mode (brown rot) but polyphyletic ancestral lineages. Gloeophyllum trabeum (Gloeophyllum clade) employed secondary metabolite (SM) synthesis in response to a competitor, as shown by the upregulation of several SM-synthesizing genes in the interaction. R. placenta (Antrodia clade) instead upregulated a larger variety of uncharacterized oxidoreductases in interacting hyphae, suggesting that an oxidative burst may be a response to competitors in this fungus. Both species produced several hypothetical proteins exclusively in the interaction zone, leaving abundant unknowns on the battlefield. This work supports the existence of multiple interaction strategies among brown rot fungi and highlights the functional diversity among wood decay fungi.
Project description:Wood-degrading fungi play a critical role in global carbon cycling, and their varied mechanisms for deconstruction offer pathways for industrial bioconversion. In this study, we used comparative genomics to isolate upregulation patterns among fungi with brown rot (carbohydrate-selective) or white rot (lignin-degrading) nutritional modes. Specifically, we used whole-transcriptome profiling to compare early, middle, and late decay stages on wood wafers, matching differentially-expressed gene (DEG) patterns with fungal growth and enzyme activities. This approach highlighted 34 genes uniquely upregulated in early brown rot stages, with notable candidates involved in generating reactive oxygen species (ROS) as a pretreatment mechanism during brown rot. This approach further isolated 18 genes in late brown rot stages that may be adapted to handle oxidatively-reacted lignocellulose components. By summing gene expression levels in functional classes, we also identified a broad and reliable distinction in glycoside hydrolase (GH) versus lignocellulose oxidative (LOX) transcript counts that may reflect the energy investment burden of lignin-degrading machinery among white rot fungi.