Project description:We profiled transcriptomes in human lung cancer cell line A549 when the expression of Bloom was knockdown by the siRNA specific to Bloom.
2018-09-06 | GSE119512 | GEO
Project description:Macrogenomes of bacteria during algal bloom
Project description:The purpose of this study was to quantify the effects of basal leaf removal applied in Sangiovese cultivar at two different phonological stages, pre-bloom and veraison, on berry composition. As very few papers were published about the regulation of gene expression induced by vineyard management techniques, we report the first global transcriptomic analysis (integrated with agronomic and biochemical data) aiming to determine the molecular mechanisms that control Sangiovese berry composition. The comparison of gene expression profiles of defoliated vines at pre-bloom and at veraison with the control, revealed a common transcriptional response at the end of veraison in both treated berries, but also a more extensive transcriptome rearrangement in pre-bloom defoliated ones, which could be linked to the strong biochemical changes detected in the berry after pre-bloom veraison.
Project description:The fraction of dissolved dimethylsulfoniopropionate (DMSPd) converted by marine bacterioplankton into the climate-active gas dimethylsulfide (DMS) varies widely in the ocean, with the factors that determine this value still largely unknown. One current hypothesis is that the ratio of DMS formation:DMSP demethylation is determined by DMSP availability, with 'availability' in both an absolute sense (i.e., concentration in seawater) and in a relative sense (i.e., proportionally to other labile organic S compounds) being proposed as the critical factor. We investigated these models during an experimentally-induced phytoplankton bloom using an environmental microarray targeting DMSP-related gene expression in the Roseobacter group, a taxon of marine bacteria known to play an important role in the surface ocean sulfur cycle. The array consisted of 1,578 probes to 431 genes, including those previously linked to DMSP degradation as well as core genes common in sequenced Roseobacter genomes. The prevailing pattern of Roseobacter gene expression showed depletion of DMSP-related transcripts during the peak of the bloom, despite the fact that absolute concentrations and flux of DMSP-related compounds were increasing. A likely interpretation is that DMSPd was assimilated by Roseobacter populations in proportion to its relative abundance in the organic matter pool (the “relative sense” hypothesis), and that it is not taken up in preference to other sources of labile organic sulfur or carbon produced during the bloom. The relative investment of the Roseobacter community in DMSP demethylation did not predict the fractional conversion of DMSP to DMS, however, suggesting a complex regulatory process that may involve multiple fates of DMSPd.
Project description:Cucumber (Cucumis sativus L.) is an economically important vegetable cultivated all over the world. Grafting can produce bloomless or sparse-bloom cucumber, which is welcomed by increasing consumers. Bloom granule is tine glandular hair, which is hard and rare studied on its formation and related genes. Mutifunctional RNA-seq is a recently developed analytical approach for transcriptome profiling via high-throughput sequencing and has been recently applied to a wide variety of organisms, which provide us reliable technical means detect bloom formation and related genes. In this study, we chose a cucumber inbred line (Shannong No.5) and two pumpkin rootstock lines as materials, and constructed four tested cucumbers, grew plants in “Yamazaki cucumber nutrient solution formula” prepared by deionized water, treated plants with or without 1.7mM potassium silicate 2 hours before collecting pericarp. Each treatment were duplicated twice.16 cDNA libraries were constructed from pericarp of a cucumber inbred line (own-rooted cucumber), C/C (self-grafted cucumber), M/C (More bloom, cucumber grafted onto “3225” rootstock) and L/C(Less bloom, cucumber grafted onto “3212” rootstock). We obtained 17,215,769~17,529,047 high quality reads, and 18,804~19,358 genes from each sample. All reads can be mapped to the cucumber genome (Version 2). By RPKM comparing, we got 38 comparing combinations with differentially expressed genes (DEGs), obtained 38 significantly expressed combinations by FDR≤0.001 and the absolute value of log2Ratio≥1 as the thresholds. These results suggest that there are many differences and genes expression mode among effects of grafting or added silicon. This study addresses a preliminary analysis and offers a foundation for future genomic research in the bloom formation of cucumber.
Project description:Marine microalgae (phytoplankton) mediate almost half of the worldwide photosynthetic carbon dioxide fixation and therefore play a pivotal role in global carbon cycling, most prominently during massive phytoplankton blooms. Phytoplankton biomass consists of considerable proportions of polysaccharides, substantial parts of which are rapidly remineralized by heterotrophic bacteria. We analyzed the diversity, activity and functional potential of such polysaccharide-degrading bacteria in different size fractions during a diverse spring phytoplankton bloom at Helgoland Roads (southern North Sea) at high temporal resolution using microscopic, physicochemical, biodiversity, metagenome and metaproteome analyses.
2024-01-15 | PXD046705 | Pride
Project description:Bacteria communities in Akashiwo sanguinea bloom of Microcosm experiment