Project description:We show that EWS-FLI1, an aberrant transcription factor responsible for the pathogenesis of Ewing sarcoma, reprograms gene regulatory circuits by directly inducing or directly repressing enhancers. At GGAA repeats, which lack regulatory potential in other cell types and are not evolutionarily conserved, EWS- FLI1 multimers potently induce chromatin opening, recruit p300 and WDR5, and create de novo enhancers. GGAA repeat enhancers can loop to physically interact with target promoters, as demonstrated by chromosome conformation capture assays. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors and abrogating p300 recruitment. ChIP-seq for of 4 histone modifications (H3K27ac, H3K4me1, H3K4me3 and H3K27me3), FLI1, p300, WDR5, ELF1 and GABPA in primary Ewing sarcomas, Ewing sarcoma cell lines (A673 and SKMNC cells), and mesenchymal stem cells (MSC). EWS-FLI1 was knocked down in Ewing sarcoma cell lines with lentiviral shRNAs (shFLI1 and shGFP control). EWS-FLI1 was expressed in MSCs with lentiviral expression vectors (pLIV EWSFLI1 or pLIV empty vector control). * Raw data not provided for the MSC and Primary Ewing sarcoma samples. *
Project description:We show that EWS-FLI1, an aberrant transcription factor responsible for the pathogenesis of Ewing sarcoma, reprograms gene regulatory circuits by directly inducing or directly repressing enhancers. At GGAA repeats, which lack regulatory potential in other cell types and are not evolutionarily conserved, EWS- FLI1 multimers potently induce chromatin opening, recruit p300 and WDR5, and create de novo enhancers. GGAA repeat enhancers can loop to physically interact with target promoters, as demonstrated by chromosome conformation capture assays. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors and abrogating p300 recruitment. Ewing sarcoma cell lines (A673 and SKNMC) were analyzed by RNA-seq. EWS-FLI1 was depleted by infection with lentiviral shRNAs (shFLI1 and shGFP control).
Project description:As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.
Project description:We show that EWS-FLI1, an aberrant transcription factor responsible for the pathogenesis of Ewing sarcoma, reprograms gene regulatory circuits by directly inducing or directly repressing enhancers. At GGAA repeats, which lack regulatory potential in other cell types and are not evolutionarily conserved, EWS- FLI1 multimers potently induce chromatin opening, recruit p300 and WDR5, and create de novo enhancers. GGAA repeat enhancers can loop to physically interact with target promoters, as demonstrated by chromosome conformation capture assays. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors and abrogating p300 recruitment. Mesenchymal stem cells (MSCs) and a Ewing sarcoma cell line (SKNMC) were analyzed by ATAC-seq. EWS-FLI1 was expressed in MSCs using a lentiviral vector (pLIV EWSFLI1 or pLIV empty vector control). * Raw data not provided for the MSC samples. *
Project description:HDGF is implicated in Ewing sarcoma. We used HDGF ChIP-Seq in combination with gene expression profiling to identify genes and pathways it regulates in Ewing sarcoma.
Project description:We show that EWS-FLI1, an aberrant transcription factor responsible for the pathogenesis of Ewing sarcoma, reprograms gene regulatory circuits by directly inducing or directly repressing enhancers. At GGAA repeats, which lack regulatory potential in other cell types and are not evolutionarily conserved, EWS- FLI1 multimers potently induce chromatin opening, recruit p300 and WDR5, and create de novo enhancers. GGAA repeat enhancers can loop to physically interact with target promoters, as demonstrated by chromosome conformation capture assays. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors and abrogating p300 recruitment.
Project description:We performed ChIPseq on histone modification marks, transcriptional factors and chromatin architectural proteins in TC-32 and TC-71 Ewing sarcoma cell lines.
Project description:Ewing sarcoma is a prototypical fusion transcription factor-associated pediatric cancer that expresses EWS/FLI or highly related fusions. EWS/FLI dysregulates transcription to induce and maintain sarcomagenesis, but the mechanisms utilized are not fully understood. We therefore sought to define the global effects of EWS/FLI on chromatin conformation and transcription in Ewing sarcoma. We found that EWS/FLI (and EWS/ERG) genomic localization is largely conserved across multiple patient-derived Ewing sarcoma cell lines. EWS/FLI binding is primarily associated with compartment activation, establishment of topologically-associated domain (TAD) boundaries, enhancer-promoter looping that involve both intra- and inter-TAD interactions, and gene activation. Importantly, local chromatin features provide the basis for transcriptional heterogeneity in regulation of direct EWS/FLI target genes across different Ewing sarcoma cell lines. These data demonstrate a key role of EWS/FLI in mediating genome-wide changes in chromatin configuration and support the notion that fusion transcription factors serve as master regulators through three-dimensional reprogramming of chromatin.
Project description:Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.
Project description:Ewing sarcoma is a prototypical fusion transcription factor-associated pediatric cancer that expresses EWS/FLI or highly related fusions. EWS/FLI dysregulates transcription to induce and maintain sarcomagenesis, but the mechanisms utilized are not fully understood. We therefore sought to define the global effects of EWS/FLI on chromatin conformation and transcription in Ewing sarcoma. We found that EWS/FLI (and EWS/ERG) genomic localization is largely conserved across multiple patient-derived Ewing sarcoma cell lines. EWS/FLI binding is primarily associated with compartment activation, establishment of topologically-associated domain (TAD) boundaries, enhancer-promoter looping that involve both intra- and inter-TAD interactions, and gene activation. Importantly, local chromatin features provide the basis for transcriptional heterogeneity in regulation of direct EWS/FLI target genes across different Ewing sarcoma cell lines. These data demonstrate a key role of EWS/FLI in mediating genome-wide changes in chromatin configuration and support the notion that fusion transcription factors serve as master regulators through three-dimensional reprogramming of chromatin.