Project description:The instrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterised. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts with only minor fluctuations over time in culture (from day 15 to day 48). We used microarray to compare the gene-expression profile of cultured human fetal cardiac MSCs over time (from day 15 to day 48). MSCs from human fetal hearts were cultured on GelTrex in a defined medium stimulating the canonical Wnt/beta-catenin pathway. Samples from three different time points (day 15, 27 and 48) were compared on microarray.
Project description:The instrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterised. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts with only minor fluctuations over time in culture (from day 15 to day 48). We used microarray to compare the gene-expression profile of cultured human fetal cardiac MSCs over time (from day 15 to day 48).
Project description:Early osteoinductive bone marrow MSCs (e-MSCs) acquire enhanced hematopoiesis-supportive ability. We performed microarray analysis on e-MSCs. Cell chemotaxis-assosiated genes were positively enriched and cell adhesion-associated genes were negatively enriched compared with control MSCs. The expression of CXCL12 and VCAM1 extremely decreased.