Project description:This study describes a cDNA microarray analysis that compared developing mouse MyoD-/- limb musculature (MyoD-dependent, innervated by Lateral Motor Column motor neurons) and Myf5-/- back (epaxial) musculature (Myf5-dependent, innervated by Medial Motor Column motor neurons) to the control and to each other, at embryonic day 13.5 which coincides with the robust programmed cell death of motor neurons and the inability of myogenesis to undergo its normal progression in the absence of Myf5 and MyoD that at this embryonic day cannot substitute for each other. We wanted to see if/how the myogenic program couples with the neurotrophic one, and also to separate Lateral from Medial column trophic requirements, potentially relevant to Motor Neuron Diseases with the predilection for the Lateral column. Several follow-up steps revealed that Kif5c, Stxbp1 and Polb, differentially expressed in the MyoD-/- limb muscle, and Ppargc1a, Glrb and Hoxd10, differentially expressed in the Myf5-/- back muscle, are actually regulators of motor neuron numbers. We propose a series of follow-up experiments and various ways to consider our current data.
Project description:Endurance exercise promotes skeletal muscle vascularization, oxidative metabolism, fiber-type switching, and neuromuscular junction integrity. Importantly, the metabolic and contractile properties of the muscle fiber must be coupled to the identity of the innervating motor neuron (MN). Here, we show that muscle-derived neurturin (NRTN) acts on muscle fibers and MNs to couple their characteristics. Using a muscle-specific NRTN transgenic mouse (HSA-NRTN) and RNA-sequencing of MN somas, we observed that retrograde NRTN signaling promotes a shift towards a slow MN identity. In muscle, NRTN increased capillary density, oxidative capacity, and induced a transcriptional reprograming favoring fatty acid metabolism over glycolysis. This combination of effects on muscle and MNs, makes HSA-NRTN mice lean with remarkable exercise performance and motor coordination. Interestingly, HSA-NRTN mice largely recapitulate the phenotype of mice with muscle-specific expression of its upstream regulator PGC-1ɑ1. This work identifies NRTN as a myokine that couples muscle oxidative capacity to slow MN identity.
Project description:Despite the discovery of many genetic risk factors, the cause of the motor neuron death that drives terminal pathology in Amyotrophic Lateral Sclerosis (ALS) remains unknown. We report that the skeletal muscle of ALS patients secretes exosomal vesicles that are specifically toxic to motor neurons. This could not be attributed to a trivial down-stream consequence of muscle denervation. In a study of muscle biopsies and biopsy-derived denervation-naïve differentiated muscle stem cells (myotubes) from 67 human subjects, including healthy and disease controls, ALS myotubes had a consistent signature of disrupted exosome biogenesis and RNA-processing, and their exosomes induced shortened, less branched, neurites, greater death, and disrupted localization of RNA and RNA-processing proteins in motor neurons. Toxicity was dependent on presence of the FUS protein, which is highly expressed in recipient motor neurons. As part of this work, we carried out gene expression analysis of myotubes (differentiated myoblasts) comparing ALS against two other motor neuron disorders as disease controls (SBMA, Spinal and bulbar muscular atrophy; and Spinal Muscular Atrophy Type 4, SMA-IV) and healthy controls.
Project description:Spinal motor atrophy mice (SMN delta 7 mice) and wild-type control hindlimb skeletal muscle tissue was used for transcriptome profiling by mRNA-seq.
Project description:These experiments are designed to discover genes that are expressed selectively by synaptic nuclei in skeletal muscle with the particular goal of identifying genes that regulate motor axon growth and differentiation. We plan to isolate RNA from the dissected synaptic region of skeletal muscle and from the non-synaptic region of skeletal muscle and to identify the genes that are expressed at higher levels in the synaptic than non-synaptic region. Previously, we showed that motor axons fail to stop and differentiate in mice lacking MuSK, a receptor tyrosine kinase that is activated by motor neuron-derived Agrin. We hypothesize that MuSK activation normally leads to the production of a retrograde stop/differentiation signal that is encoded by a gene that is expressed preferentially in synaptic nuclei. In the absence of MuSK signaling, the retrograde signaling is not produced by synaptic nuclei, and consequently motor axons wander aimlessly over the muscle. We obtain 6 to 8 micrograms of total RNA from the dissected synaptic or non-synaptic region from a single P21 mouse diaphragm muscle. This is a standard procedure in the lab, and we have used these methods to analzye gene expression and to generate high-quality cDNA libraries. Because the synaptic zone is narrower in the left hemi-diaphragm, we will isolate RNA from this half of the diaphragm. In order to isolate sufficient RNA (5 micrograms from each sample), we will pool the synaptic and non-synaptic regions from two hemi-diaphragms. In order to reduce experimental variability, we wish to analzye expression in six samples: three samples of synaptic RNA and three samples of non-synaptic RNA. We will ship the isolated RNA samples to the Consortium in order to generate labeled cDNA, to screen Affymetrix mouse oligo arrays and to assist in the analysis. Several genes, including the subunits of the acetylcholine receptor, MuSK, acetylcholinesterase, and utrophin are known to be expressed preferentially in synaptic nuclei; thus, these genes serve as internal controls for the reliability and effectiveness of the screen. Most other genes, several of which we have analyzed in previous studies, including actin, GAPDH, runx1, nogoC, creatine kinase, etc. are expressed uniformly in skeletal muscle; thus, expression of these genes should be equally represented in synaptic and non-synaptic regions. Experiment Overall Design: as above
Project description:The motor neuron (MN)–hexamer complex consisting of LIM homeobox 3, Islet-1, and nuclear LIM interactor is a key determinant of motor neuron specification and differentiation. To gain insights into the transcriptional network in motor neuron development, we performed a genome-wide ChIP-sequencing analysis and found that the MN–hexamer directly regulates a wide array of motor neuron genes by binding to the HxRE (hexamer response element) shared among the target genes. Interestingly, STAT3-binding motif is highly enriched in the MN–hexamer–bound peaks in addition to the HxRE. We also found that a transcriptionally active form of STAT3 is expressed in embryonic motor neurons and that STAT3 associates with the MN–hexamer, enhancing the transcriptional activity of the MN–hexamer in an upstream signal-dependent manner. Correspondingly, STAT3 was needed for motor neuron differentiation in the developing spinal cord. Together, our studies uncover crucial gene regulatory mechanisms that couple MN–hexamer and STAT-activating extracellular signals to promote motor neuron differentiation in vertebrate spinal cord. To explain our experimental scheme briefly, we are interested in finding target sites for the dimer of transcription factors Isl1 and Lhx3. To mimic the biological activity of Isl1/Lhx3 dimer, we made Isl1-Lhx3 fusion and found that Isl1-Lhx3 has a potent biological activity in multiple systems (i.e. generation of ectopic motor neurons). Then we made ES cell line that induces Flag-tagged Isl1-Lhx3 expression upon Dox treatment. These *mouse* ES cells differentiate to motor neurons (iMN-ESCs) when treated with Dox following EB formation. To identify genomic binding sites of Isl1-Lhx3 (Flag-tagged), we performed ChIP with Flag antibody (pull down of Flag-Isl1-Lhx3) in ES cells treated with Dox. ChIP with Flag antibody in ES cells treated with vehicle (no Dox) was done as a negative control in parallel, and sequenced along with +Dox sample. We have done these experiments twice (two sets).
Project description:We profiled miRNAs from embryonic stem cells to motor neurons derived via RA (retinoic acid) and distinguished different developmental stages by days. Those developmental stages are ESC, Day2, Day3, Day4, and both motor neuron and interneuron with day7. We also provide the fractionated nuclear and cytoplasm miRNA profiling with motor neuron and interneuron respectivey.
Project description:To determine what kind of genes are involved in vocal learning ability, we performed microarray experiments using 3 vocal learning species (zebra finch, budgerigar, Anna's hummingbird) and 2 non-vocal learning species(ring dive, and Japanese quail) from the bird group. All of the animals are male adults. They were isolated over night and had 1hour light exposure at morning. Birds who did not sing were used in this experiment. We used 2-3 animals each species. We used the 12th motor neuron for both vocal learners and non-vocal learners. We used the Supra Spinal motor neuron (ssp) as control area for both groups.