Project description:Genome-wide studies in plants have provided evidence for the role of H3K9ac and H3K27me3 in gene activation and repression, respectively. The roles of these histone modifications in rose remain unknown and represent a represent a limitation to the full understanding of how thousands of bioprocesses are regulated. To determine the genomic landscape of these marks, we performed a ChIP-seq analysis using H3K9ac and H3K27me3 antibodies on petals from a heterozygous plant.
Project description:Rosa chinensis ‘Pallida’ (Rosa L.) is one of the most important ancient rose cultivars originating from China. It contributed the ‘tea scent’ trait to modern roses. However, little information is available on the gene regulatory networks involved in scent biosynthesis and metabolism in Rosa. In this study, the transcriptome of R. chinensis ‘Pallida’ petals at different developmental stages, from flower buds to senescent flowers, was investigated using Illumina sequencing technology. De novo assembly generated 89,614 clusters with an average length of 428 bp. Based on sequence similarity search with known proteins, 62.9% of total clusters were annotated. Out of these annotated transcripts, 25,705 and 37,159 sequences were assigned to gene ontology and clusters of orthologous groups, respectively. The dataset provides information on transcripts putatively associated with known scent metabolic pathways. Digital gene expression (DGE) was obtained using RNA samples from flower bud, open flower and senescent flower stages. Comparative DGE and quantitative real time PCR permitted the identification of five transcripts encoding proteins putatively associated with scent biosynthesis in roses. The study provides a foundation for scent-related genes discovery in roses.
Project description:affy_petaldvt_lyon_rose. The objective is to identify genes involved in petal development in rose. We aim at identifying genes whose expression correlates with flower opening and scent emission. In this study, we used a microarray approach to compare the transcriptome of a scented rose flower (PF) versus non-scented rose flower (RF). Samples (petal tissues) were collected at the same time early in the afternoon. Total RNA was extracted using the Plant RNA kit (Macherey Nagel), and then used to hybridize Rosa-Affymetrix microarrays. Keywords: scented vs non-scented flowers 4 arrays - rose. Scented and non-scented flowers, 2 replicates each.
Project description:Rose (Rosa hybrida L.) is a major cut flowers in the world. Studying the molecular mechanism of auxin regulation in growth is of great significance for enhancing the understanding of the growth and development processes of rose and informing accurate exogenous auxin application in rose production. However, the response mechanism of rose to miRNA-mediated auxin signal transduction is unclear. In this study, rose plants were treated with IAA, and 75 known miRNAs and 168 novel miRNAs were identified by small RNA sequencing. Among them, 19 known miRNAs and 42 miRNAs were differentially expressed. Many differential miRNAs demonstrated staged responses to auxin treatment. The targeted relationship between miRNA and key transcription factors regulated by auxin in rose was analyzed, and the target genes in the ARF family and AUX/IAA family were screened. By using quantitative real-time PCR(qRT-PCR) to verify the expression patterns of the miRNA regulating the auxin signal transduction pathway and its target gene, we found that miR156a, miR160a, miR164a, miR167d, miR396b-3p, novel_miR_189, novel_miR_74, novel_miR_8, and novel_miR_207 interacted negatively with the ARF family, and miR390a-3p and novel_miR_101 interacted negatively with the AUX/IAA family. These results provide a theoretical basis for further studies on the auxin regulatory mechanisms in rose.
2023-02-28 | GSE225844 | GEO
Project description:Rose receptacle malformation under low temperature
Project description:affy_petaldvt_lyon_rose. The objective is to identify genes involved in petal development in rose. We aim at identifying genes whose expression correlates with flower opening and scent emission. In this study, we used a microarray approach to compare the transcriptome of a scented rose flower (PF) versus non-scented rose flower (RF). Samples (petal tissues) were collected at the same time early in the afternoon. Total RNA was extracted using the Plant RNA kit (Macherey Nagel), and then used to hybridize Rosa-Affymetrix microarrays. Keywords: scented vs non-scented flowers