Project description:Bark beetles (Coleoptera: Scolytinae) are pests of many forests around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant pest of western North American pine forests. The MPB is able to overcome the defences of pine trees through pheromone-assisted aggregation that results in a mass attack of host trees. These pheromones, both male and female produced, are believed to be biosynthesized in the midgut and/or fat body of these insects. We have used transcriptomics (RNA-seq) to identify transcripts differentially expressed between sexes and between tissues, with juvenile hormone III treatment, which is known to induce pheromone biosynthesis.
Project description:The present project deals with bark beetle gut total proteome from callow and black bark beetle, Ips typographus. The study aims to identify life stage-specific expression of gut proteins in bark beetles and their functional relevance.
Project description:Using 21K spruce microarray (that contains 21.8 thousand unique transcripts) we performed analysis of the transcriptome response of lodgepole pine (Pinus contorta) inoculated with the mountain pine beetle (Dendroctonus ponderosae) vectored fungal pathogen Grosmannia clavigera or treated with wounding. This microarray analysis revealed large transcriptome reorganization with close to 2000 transcripts (10% of the studied transcriptome) differentially expressed within two weeks of treatment, with the wounding response affecting close to 2% of the lodgepole pine transcriptome. RNA was isolated from the bark of lodgepole pine inoculated with Grosmannia clavigera, treated with wounding, or untreated control for three time points (6h, 2days and 2 weeks). Three independent biological replicates were included for each treatment and each time point. Three hybridizations were performed for each comparison of different treatments (fungal, wounding, control) within each time point (6 hours, 2 days, 2 weeks) and one hybridization was performed for the comparison of the same treatments between time points (total 36 hybridizations/slides).
Project description:Using 21K spruce microarray (that contains 21.8 thousand unique transcripts) we performed analysis of the transcriptome response of interior spruce (Picea glauca x engelmannii) inoculated with the spruce beetle (Dendroctonus rufipennis) vectored blue stain fungal pathogen Leptographium abietinum or treated with wounding. This microarray analysis revealed large transcriptome reorganization with close to 2000 transcripts (10% of the studied transcriptome) differentially expressed within two weeks of treatment, with the wounding response affecting close to 5% of the interior spruce transcriptome. RNA was isolated from the bark of interior spruce inoculated with Leptographium abietinum, treated with wounding, or untreated control for three time points (6h, 2days and 2 weeks). Three independent biological replicates were included for each treatment and each time point. Three hybridizations were performed for each comparison of different treatments (fungal, wounding, control) within each time point (6 hours, 2 days, 2 weeks) and one hybridization was performed for the comparison of the same treatments between time points (total 36 hybridizations/slides).