Project description:Prenatal development is a critical period for programming of neurological disease. Preeclampsia, a pregnancy complication involving oxidative stress in the placenta, has been associated with long-term health implications for the child, including an increased risk of developing schizophrenia and autism spectrum disorders in later life. We have shown previously, in a rodent model of placental oxidative stress, that culture medium conditioned by the placenta alters neuronal characteristics when applied to primary cortical cultures in vitro and mimics many of the neurodevelopmental changes observed in the offspring brain. To further investigate if molecules released by the placenta may be important mediators in foetal programming of the brain, we analysed if placental tissue delivered from patients with preeclampsia secreted molecules that could affect cortical cells in culture. Application of culture medium conditioned by preeclamptic placentae to mixed cortical cultures caused changes in neurons and astrocytes that were related to key changes observed in brains of patients with schizophrenia and autism, including effects on dendrite lengths, astrocyte number as well as glutamate and GABA receptors. Treatment of the placental explants with an antioxidant prevented neuronal abnormalities. Furthermore, we identified that bidirectional communication between neurons and astrocytes, potentially via glutamate, is required to produce the effects of preeclamptic placenta medium on cortical cells. Analysis of possible signalling molecules in the placenta conditioned medium showed that the secretion profile of extracellular microRNA, small posttranscriptional regulators, was altered in preeclampsia and partially rescued by antioxidant treatment of the placental explants. Predicted targets of these differentially abundant microRNAs were linked to neurodevelopment and the placenta. The presented study provides further evidence that the diseased placenta may release factors that damage cortical cells in the brain and suggests the possibility of targeted antioxidant treatment of the placenta to prevent neurodevelopmental disorders.
Project description:Prenatal development is a critical period for programming of neurological disease. Preeclampsia, a pregnancy complication involving oxidative stress in the placenta, has been associated with long-term health implications for the child, including an increased risk of developing schizophrenia and autism spectrum disorders in later life. To investigate if molecules released by the placenta may be important mediators in foetal programming of the brain, we analysed if placental tissue delivered from patients with preeclampsia secreted molecules that could affect cortical cells in culture. Application of culture medium conditioned by preeclamptic placentae to mixed cortical cultures caused changes in neurons and astrocytes that were related to key changes observed in brains of patients with schizophrenia and autism, including effects on dendrite lengths, astrocyte number as well as on levels of glutamate and γ-aminobutyric acid receptors. Treatment of the placental explants with an antioxidant prevented neuronal abnormalities. Furthermore, we identified that bidirectional communication between neurons and astrocytes, potentially via glutamate, is required to produce the effects of preeclamptic placenta medium on cortical cells. Analysis of possible signalling molecules in the placenta-conditioned medium showed that the secretion profile of extracellular microRNAs, small post-transcriptional regulators, was altered in preeclampsia and partially rescued by antioxidant treatment of the placental explants. Predicted targets of these differentially abundant microRNAs were linked to neurodevelopment and the placenta. The present study provides further evidence that the diseased placenta may release factors that damage cortical cells and suggests the possibility of targeted antioxidant treatment of the placenta to prevent neurodevelopmental disorders.
Project description:The purpose of this study was to determine the difference of the miRNA profiles between normal and preeclamptic placenta. Ten placental samples were analyzed. Six were from preeclamptic patients and four were from normal pregnancies.
Project description:The E3 ubiquitin ligase MULE (Mcl-1 Ubiquitin Ligases E3) targets myeloid cell leukemia factor 1 (Mcl-1) and tumor suppressor p53 for proteasomal degradation. Although Mcl-1 and p53 have been implicated in trophoblast cell death in preeclampsia (PE) and intrauterine growth restriction (IUGR), the mechanisms regulating their expression in the human placenta remains elusive. Herein, we investigated MULE's involvement in regulating Mcl-1 and p53 degradation during normal and abnormal (PE, IUGR) placental development. MULE expression peaked at 5-7 weeks of gestation, when oxygen tension is low and inversely correlated with that of Mcl-1 and p53. MULE efficiently bound to Mcl-1 and p53 and regulated their ubiquitination during placental development. Exposure of first trimester villous explants to 3% O(2) resulted in elevated MULE expression compared with 20% O(2). Low-oxygen-induced MULE expression in JEG3 choriocarcinoma cells was abolished by hypoxia-inducible factor (HIF)-1α siRNA. MULE was overexpressed in both PE and IUGR placentae. In PE, MULE preferentially targeted p53 for degradation, allowing accumulation of pro-apoptotic Mcl-1 isoforms. In IUGR, however, MULE targeted pro-survival Mcl-1, allowing p53 to accumulate and exert its apoptotic function. These data demonstrate that oxygen regulates Mcl-1 and p53 stability during placentation via HIF-1-controlled MULE expression. The different preferential targets of MULE in PE and IUGR placentae classify early-onset PE and IUGR as distinct molecular pathologies.
Project description:To determine differential expression of microRNAs in placentae with severe pre-eclampsia and normal placenta. Differential expression of microRNAs in placentae (4 severe pre-eclampsia and 4 normal control) was screened by microarray platform, then some differential microRNAs were selected and validated with real-time quantitative reverse transcription polymerase chain reaction in placentae of severe pre-eclampsia (n=24) and normal control group (n=26). Results: We validated the expression of some microRNAs altered in the microarray, and found the following microRNAs were significantly increased in severe pre-eclampsia placentae: miR-16, miR-29b, miR-195, miR-26b, miR-181a, miR-335 and miR-222. Conclusion: These differential microRNAs may play an important role in pathogenesis of pre-eclampsia. We analyzed the microRNA expression in the placentae of Chinese patients with severe pre-eclampsia.
Project description:Small RNA sequencing on trophoblast debris samples was employed to profile the small RNA contents in either normotensive or preeclamptic trophoblast debris. We have identified 1278 miRNAs and 2646 non-miRNA small RNA fragments across all trophoblast debris samples. Differential expression analysis was executed by iSRAP small RNA sequencing analysis pipeline and we identified 16 miRNAs, 5 tRNA fragments from 3 different tRNAs, 13 snRNA fragments and 85 rRNA fragments differentially contained between preeclamptic and normotensive trophoblast debris
Project description:To determine differential expression of microRNAs in placentae with severe pre-eclampsia and normal placenta. Differential expression of microRNAs in placentae (4 severe pre-eclampsia and 4 normal control) was screened by microarray platform, then some differential microRNAs were selected and validated with real-time quantitative reverse transcription polymerase chain reaction in placentae of severe pre-eclampsia (n=24) and normal control group (n=26). Results: We validated the expression of some microRNAs altered in the microarray, and found the following microRNAs were significantly increased in severe pre-eclampsia placentae: miR-16, miR-29b, miR-195, miR-26b, miR-181a, miR-335 and miR-222. Conclusion: These differential microRNAs may play an important role in pathogenesis of pre-eclampsia.
Project description:Placental Tissue Samples from 36 women (17 normotensive women, denoted with a P, and 19 preeclamptic women, denoted with a Q) were analyzed for differenital methylation Preeclamptic womene were compared direclty to normotensive women controlling for gestational age, race, maternal age, and baby sex
Project description:Pre-eclampsia is a pregnancy complication characterized by defective vascular remodeling in maternal decidua responsible for reduced blood flow leading to functional and structural alterations in the placenta. We have investigated the contribution of the complement system to decidual vascular changes and showed that trophoblasts surrounding unremodeled vessels prevalent in preeclamptic decidua fail to express C1q that are clearly detected in cells around remodeled vessels predominant in control placenta. The critical role of C1q is supported by the finding that decidual trophoblasts of female C1qa-/- pregnant mice mated to C1qa+/+ male mice surrounding remodeled vessels express C1q of paternal origin. Unlike C1qa-/- pregnant mice, heterozygous C1qa+/- and wild type pregnant mice share a high percentage of remodeled vessels. C1q was also found in decidual vessels and stroma of normal placentae and the staining was stronger in preeclamptic placentae. Failure to detect placental deposition of C1r and C1s associated with C1q rules out complement activation through the classical pathway. Conversely, the intense staining of decidual endothelial cells and villous trophoblast for ficolin-3, MASP-1 and MASP-2 supports the activation of the lectin pathway that proceeds with the cleavage of C4 and C3 and the assembly of the terminal complex. These data extend to humans our previous findings of complement activation through the lectin pathway in an animal model of pre-eclampsia and provide evidence for an important contribution of C1q in decidual vascular remodeling.