Project description:Multiple myeloma is an incurable hematological malignancy evolving from precursor states to advanced phases of the disease. MYC abnormalities play a critical role in the disease progression. Nevertheless, MYC lacks therapeutic drugability, thereby necessitating the exploration of alternative strategies aimed at circumventing the challenges associated with targeting MYC. In this study, we hypothesized that MYC upregulation induces genomic dependencies in tumor cells, creating vulnerabilities that can be exploited therapeutically. We discovered a differential dependency on glutamine metabolism in MYC overexpressing cells. We functionally explored these dependencies as a selective targetable vulnerability in vitro and in vivo. Furthermore, we uncovered a potential synergistic combination that can exacerbated this metabolic vulnerability, Collectively, our in vitro and in vivo results revealed an effective therapeutic combinatory strategy in the context of MYC overexpressing MM.
Project description:Deubiquitylases (DUBs) remove ubiquitin from proteins. In the context of cancer, their inhibition can induce the degradation of oncoproteins, that may otherwise be “undruggable”. Multiple myeloma (MM) is the second most common hematological malignancy with poor outcome and high sensitivity towards ubiquitin-proteasome-system (UPS) inhibitory therapies. However, the role of DUBs in MM pathophysiology and therapy has remained elusive. Starting from genetic screening for DUB dependencies in MM, we here identify OTUD6B as a central vulnerability in MM that drives the G1/S cell cycle transition by means of deubiquitylating and stabilizing LIN28B subsequent to LIN28B phosphorylation. LIN28B regulates miRNA biogenesis and exerts high expression in embryonic stem cells that becomes re-established in certain tumors, including MM. Binding of LIN28B at G1/S activates OTUD6B, which otherwise remains in a catalytically inactive state. As a consequence, stabilized LIN28B drives MYC expression via inhibition of let7 microRNAs, which in turn allows for a rapid transition of MM cells from G1 to S phase. Analyses of primary MM patient samples reveal a positive correlation of OTUDB6B expression with poor outcome, high MYC expression and MYC target gene induction, suggesting that high MYC levels in MM result from an activation of the OTUD6B-LIN28B nexus. Together, we here specify phosphorylation and cell cycle-dependent substrate binding as a means by which OTUD6B becomes activated to drive the G1/S transition via the LIN28B-MYC axis and nominate OTUD6B and LIN28B as actionable vulnerabilities in MM.
Project description:The paper describes a model of multiple myeloma.
Created by COPASI 4.26 (Build 213)
This model is described in the article:
A mathematical model of cell equilibrium and joint cell formation in multiple myeloma
M.A. Koenders, R. Saso
Journal of Theoretical Biology 390 (2016) 73–79
Abstract:
In Multiple Myeloma Bone Disease healthy bone remodelling is affected by tumour cells by means of paracrine cytokinetic signalling in such a way that osteoclast formation is enhanced and the growth of osteoblast cells inhibited. The participating cytokines are described in the literature. Osteoclast-induced myeloma cell growth is also reported. Based on existing mathematical models for healthy bone remo- delling a three-way equilibrium model is presented for osteoclasts, osteoblasts and myeloma cell populations to describe the progress of the illness in a scenario in which there is a secular increase in the cytokinetic interactive effectiveness of paracrine processes. The equilibrium state for the system is obtained. The paracrine interactive effectiveness is explored by parameter variation and the stable region in the parameter space is identified. Then recently-discovered joint myeloma–osteoclast cells are added to the model to describe the populations inside lytic lesions. It transpires that their presence expands the available parameter space for stable equilibrium, thus permitting a detrimental, larger population of osteoclasts and myeloma cells. A possible relapse mechanism for the illness is explored by letting joint cells dissociate. The mathematics then permits the evaluation of the evolution of the cell populations as a function of time during relapse.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.