Project description:The ‘small perturbation’ approach is critical in studying the ‘steady state’ of a biological system. In our experiments, small perturbations were generated by applying a series of repeating intermittent small doses of ultraviolet radiation to a human keratinocyte cell line, HaCaT. The biological response was assessed by monitoring the gene expression profiles using a high reliability and high resolution cDNA microarray system. Following intermittent 10 J/m2 UVB small perturbations, two opposite classes of genes, down-regulated and up-regulated, exhibited an immediate response followed by relaxation between each small perturbation, but were prolonged down- or up-regulated without relaxation while larger doses (233 or 582.5 J/m2) of UVB were applied. A repeated cycle pattern of gene expression following small perturbations is an indication of the existence of steady states. This cycle pattern is suppressed when large perturbations are applied. We believe that this is a universal phenomenon. In our experiments, the functions of up-regulated genes were mainly associated with anti-proliferation, anti-mitogenesis, and apoptosis. On the other hand, down-regulated genes were mainly related to proliferation, mitogenesis, and anti-apoptosis. In conclusion, this study experimentally proves the concept of steady state at the transcription level and demonstrates the feasibility of using small perturbation approaches for investigating steady states. This study could also set a foundation of computational systems biology, which has implicitly used the concept of steady state. Keywords: time course
Project description:The â??small perturbationâ?? approach is critical in studying the â??steady stateâ?? of a biological system. In our experiments, small perturbations were generated by applying a series of repeating intermittent small doses of ultraviolet radiation to a human keratinocyte cell line, HaCaT. The biological response was assessed by monitoring the gene expression profiles using a high reliability and high resolution cDNA microarray system. Following intermittent 10 J/m2 UVB small perturbations, two opposite classes of genes, down-regulated and up-regulated, exhibited an immediate response followed by relaxation between each small perturbation, but were prolonged down- or up-regulated without relaxation while larger doses (233 or 582.5 J/m2) of UVB were applied. A repeated cycle pattern of gene expression following small perturbations is an indication of the existence of steady states. This cycle pattern is suppressed when large perturbations are applied. We believe that this is a universal phenomenon. In our experiments, the functions of up-regulated genes were mainly associated with anti-proliferation, anti-mitogenesis, and apoptosis. On the other hand, down-regulated genes were mainly related to proliferation, mitogenesis, and anti-apoptosis. In conclusion, this study experimentally proves the concept of steady state at the transcription level and demonstrates the feasibility of using small perturbation approaches for investigating steady states. This study could also set a foundation of computational systems biology, which has implicitly used the concept of steady state. Keywords: time course Three UVB exposures are indicated by UV at time points of 0, 8 and 16 hours. T1, T2, T3, T4, T5, and T6 denote the sampling time points. T1, T3 and T5 are allocated 30 minutes after the corresponding UVB irradiation. T2, T4 and T6 are allocated 8 hours after each UVB irradiation. At each sampling time point, two samples (control and UV-irradiated) are collected. See supplementary file Loop_design.pdf for further explanation.
Project description:Functional analysis demonstrates that neutrophils generated by emergency granulopoiesis have elevated bactericidal activity when compared to control (steady state) neutrophils. To determine if transcriptomic changes support these functional adaptations, we performed gene expression analysis on emergency granulopoiesis and steady state neutrophils before and after infection.
Project description:To reveal the cardiac immune landscape of mouse heart in steady state, we performed single-cell RNA-sequencing (scRNA-seq) with heart tissue from wide type mice and immune subsets were analyzed to reveal cardiac immune features.
Project description:This experiment analyzes the global impact of Atg5-/- mutation on steady-state protein levels by a standard SILAC experiment. WT+vector cells were grown in isotopically labeled media for multiple passages in order to fully label the proteome. Unlabeled Atg5-/- cells and labeled WT+vector cells were grown to confluency and protein extracts from quiescent cultures were combined at a 1:1 ratio and analyzed by LC-MS/MS. In this experiment, ratios of labeled to unlabeled spectra report on changes in steady-state expression levels of proteins induced by impairment of autophagy. Table of files Cells Fractionation Raw Data Filenames Wildtype & Atg5-/- Yes SILAC_(1-8).raw (8 fractions)