Project description:Plastid Encoded RNA Polymerase (PEP) is a bacterial type multisubunit RNA polymerase responsible for the bulk of transcription in chloroplasts. It contains four core subunits, which are orthologs of their cyanobacterial counterparts. In Arabidopsis thaliana PEP associates with 12 PEP-associated proteins (PAPs), which serve as peripheral subunits of the RNA polymerase. The exact contributions of PAPs to PEP function remain poorly understood. We show that a peripheral subunit of PEP, PAP1 (pTAC3), binds the same genomic loci as RpoB, a core subunit of PEP. PAP1 (pTAC3) and another peripheral PEP subunit, PAP7 (pTAC14), are required for RpoB binding to DNA. RpoB and another core PEP subunit, RpoC1, are expressed in pap1 (ptac3) and pap7 (ptac14) mutants. We propose that the peripheral subunits of PEP are required for the recruitment of core PEP subunits to DNA. pTAC3, binds the same genomic loci as RpoB, a core subunit of PEP. PAP1 pTAC3 and another peripheral PEP subunit, PAP7
Project description:Bigelowiella natans is a marine chlorarachniophyte whose plastid was acquired secondarily via endosymbiosis with a green alga. Integrating a photosynthetic endosymbiont within the host metabolism on route to plastid evolution would require the acquisition of strategies for coping with changes in light intensity and modifications of host genes to appropriately respond to changes in photosynthetic metabolism. To investigate the transcriptional response to light intensity in chlorarachniophytes, we conducted an RNA-seq experiment to identify differentially-expressed genes following four-hour shift to high or very-low light. A shift to high light altered the expression of over 2000 genes, many involved with photosynthesis, primary metabolism, and reactive-oxygen scavenging. These changes are related to an attempt to optimize photosynthesis and increase energy sinks for excess reductant, while minimizing photo-oxidative stress. A transfer to very-low light resulted in a lower photosynthetic performance and metabolic alteration, reflecting an energy-limited state. Genes located on the nucleomorph, the vestigial nucleus in the plastid, had few changes in expression in either light treatment, indicating this organelle has relinquished most transcriptional control to the nucleus. Overall, during plastid origin, both host and transferred endosymbiont genes evolved a harmonized transcriptional network to respond to a classic photosynthetic stress.
Project description:We report that phosphatidylglycerol (PG) biosynthesis in plastid is required for plastid gene expression mediated by plastid-encoded RNA polymerase and light-induced expression of nuclear-encoded photosynthesis-associated genes. A transcription factor GOLDEN-LIKE1 was also found to be involved in the downregulation of nuclear photosynthesis genes in responce to PG deficiency.
2022-07-15 | GSE180205 | GEO
Project description:Novel plastid genome characteristics in Fugacium kawagutii and accelerated evolution of plastid proteins in dinoflagellates
Project description:Shortly after the release of singlet oxygen (1O2), drastic changes in nuclear gene expression occur in the conditional flu mutant of Arabidopsis that reveal a rapid transfer of signals from the plastid to the nucleus. In contrast to retrograde control of nuclear gene expression by plastid signals described earlier, the primary effect of 1O2 generation in the flu mutant is not the control of chloroplast biogenesis but the activation of a broad range of signaling pathways known to be involved in biotic and abiotic stress responses. This activity of a plastid-derived signal suggests a new function of the chloroplast, namely that of a sensor of environmental changes that activates a broad range of stress responses. Inactivation of the plastid protein EXECUTER1 attenuates the extent of 1O2-induced up-regulation of nuclear gene expression, but it does not fully eliminate these changes. A second related nuclear-encoded protein, dubbed EXECUTER2, has been identified that is also implicated with the signaling of 1O2-dependent nuclear gene expression changes. Like EXECUTER1, EXECUTER2 is confined to the plastid. Inactivation of both EXECUTER proteins in the ex1/ex2/flu triple mutant is sufficient to suppress the up-regulation of almost all 1O2-responsive genes. Retrograde control of 1O2-responsive genes requires the concerted action of both EXECUTER proteins within the plastid compartment. Keywords: biotic and abiotic stress response, nuclear gene expression, plastid-derived signal, Col-0 ecotype, continuous light and then dark-incubated plants
Project description:Plastids emit signals that broadly affect cellular processes. Based on previous genetic analyses, we propose that plastid signaling regulates the downstream components of a light signaling network and that these interactions coordinate chloroplast biogenesis with both the light environment and development by regulating gene expression. We tested these ideas by analyzing light-regulated and plastid-regulated transcriptomes. We found that the plastid is a major regulator of light signaling, attenuating the expression of more than half of all light-regulated genes in our dataset and changing the nature of light regulation for a smaller fraction of these light-regulated genes. Our analyses provide evidence that light and plastid signaling are interactive processes and are consistent with these interactions serving as major drivers of chloroplast biogenesis and function.
Project description:Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of non-lineage specific genes was conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families.
Project description:Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of non-lineage specific genes was conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families. Whole transcriptome dual color arrays were used to discover differentially expressed genes following sub-lethal exposure to five cyanobacteria in D. pulex. RNA was isolated from eight independent and concurrently replicated exposures of Daphnia to control and five cyanobacteria conditions. RNA was hybridized to microarrays using a standard, control vs. treated design that included dye swaps. Cyanobacteria were Anabaena (ANA), Aphanizomenon (Aph), Cylindrospermopsis (Cyl), Nodularia (Nod) and Oscillatoria (Osl).