Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:Pseudomonas aeruginosa is a pathogenic micro-organism responsible for many hospital-acquired infections. It is able to adhere to solid surfaces and develop an immobilised community or so-called biofilm. Many studies have been focusing on the use of specific materials to prevent the formation of these biofilms, but the reactivity of the bacteria in contact to surfaces remains unknown. In order to evaluate the impact of different materials on the physiology of Pseudomonas aeruginosa during the first stage of biofilm formation, i.e. adhesion, we investigated the total proteome of cells adhering to three materials: stainless steel, glass and polystyrene. Using tandem mass spectrometry performed at the PAPPSO proteomic platform, 930 proteins were identified, 70 of which were differentially expressed between the materials. Dysregulated proteins belonged to 19 PseudoCAP (Pseudomonas Community Annotation Project) functional classes, with a particular abundance of proteins involved in small molecule transport and membrane proteins. Notably, ten porins or porin precursors were under-produced in bacteria adhering to stainless steel when compared to those adhering to polystyrene and glass. Although adhesion to solid surfaces is an extracellular phenomenon, it involves not only extracellular proteins but also intracellular reactions, as observed with the dysregulation of 11 proteins involved in various metabolisms and five in protein translation. Overall, this work showed that during bacterial adhesion, P. aeruginosa senses the materials concerned and is able to modulate its physiology accordingly.
Project description:In the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate global gene expression profiles during the cellular response of Pseudomonas aeruginosa to sodium hypochlorite Keywords: Antimicrobial response
Project description:In the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Pseudomonas aeruginosa to Chlorhexidine diacetate, which involved initial growth inhibition and metabolism. Keywords: Transcriptome study
Project description:In the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Pseudomonas aeruginosa to ortho-phenylphenol, which involved initial growth inhibition and metabolism. Keywords: Time course
Project description:This study addresses the impact of zinc limitation on the opportunistic human pathogen, Pseudomonas aeruginosa. Zinc limitation was assessed in the P. aeruginosa PAO1 strain using an isogenic deletion mutant lacking the periplasmic, zinc solute-binding protein, znuA (PA5498). ZnuA delivers bound zinc to its cognate ABC transporter, ZnuBC, for import into the cytoplasm. Our transcriptional analyses revealed P. aeruginosa to possess a multitude of zinc acquisition mechanisms, each of which were highly up-regulated in the zinc-deficient znuA mutant strain. P. aeruginosa also utilized zinc-independent paralogues of zinc-dependent genes to maintain cellular function under zinc limitation. Together, these data reveal the complex transcriptional response and versatility of P. aeruginosa to zinc depletion.