Project description:250 adult T. urticae females from the London strain (grown on acyanogenic P. vulgaris cv. Prelude bean plants) were transferred to cyanogenic P. lunatus cv. 8078 bean plants. Thirty-five generations after the host transfer, total RNA was extracted from mites growing on both bean species (London and London-CYANO strain) and used in in a genome-wide gene expression microarray (Sureprint G3 microarray, Agilent) experiment to assess significantly differentially expressed genes (FC ≥ 2 and FDR-corrected p-value < 0.05) between mites grown on P. vulgaris (cv. Prelude) bean plants (London strain) and mites grown for 35 generations on P. lunatus (cv. 8078) bean plants (London-CYANO strain).
Project description:The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents that changed expression in response to the burrowing of live scabies mites. Four biological replicates for the uninfested control condition and five biological replicates for the treatment conditions (live mites, mite extract) were processed for gene expression analysis using Affymetrix Human Gene 1.0 ST arrays.
Project description:250 adult T. urticae females from the London strain (grown on acyanogenic P. vulgaris cv. Prelude bean plants) were transferred to cyanogenic P. lunatus cv. 8078 bean plants. Thirty-five generations after the host transfer, total RNA was extracted from mites growing on both bean species (London and London-CYANO strain) and used in in a genome-wide gene expression microarray (Sureprint G3 microarray, Agilent) experiment to assess significantly differentially expressed genes (FC M-bM-^IM-% 2 and FDR-corrected p-value < 0.05) between mites grown on P. vulgaris (cv. Prelude) bean plants (London strain) and mites grown for 35 generations on P. lunatus (cv. 8078) bean plants (London-CYANO strain). 4 replicates for one comparison: mites of the London strain grown on P. lunatus for 35 generations (London-CYANO) compared to mites of the London strain grown on P. vulgaris bean plants (London)
Project description:Uric acid stored in the fat body of cockroaches is a nitrogen reservoir mobilized in times of scarcity. The discovery of urease in Blattabacterium cuenoti, the primary endosymbiont of cockroaches, suggests that the endosymbiont may participate in cockroach nitrogen economy. However, bacterial urease may only be one piece in the entire nitrogen recycling process from insect uric acid. Thus, in addition to the uricolytic pathway to urea, there must be glutamine synthetase assimilating the released ammonia by the urease reaction to enable the stored nitrogen to be metabolically usable. None of the Blattabacterium genomes sequenced to date possess genes encoding for those enzymes. To test the host's contribution to the process, we have sequenced and analysed Blattella germanica transcriptomes from the fat body. We identified transcripts corresponding to all genes necessary for the synthesis of uric acid and its catabolism to urea, as well as for the synthesis of glutamine, asparagine, proline and glycine, i.e. the amino acids required by the endosymbiont. We also explored the changes in gene expression with different dietary protein levels. It appears that the ability to use uric acid as a nitrogen reservoir emerged in cockroaches after its age-old symbiotic association with bacteri
Project description:Background Trombidid mites have a unique lifecycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea (“chiggers”), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, which affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium. Results Sequencing was performed on the Illumina MiSeq platform. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae. Conclusions Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control. Project was jointly supervised by Stuart Armstrong and Ben Makepeace.