Project description:GPR68 is an essential flow sensor in arteriolar endothelium, and is a critical signaling component in cardiovascular pathophysiology
Project description:Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.
Project description:Blood flow within the vasculature is a critical determinant of endothelial cell (EC) identity and functionality, yet the intricate interplay of various hemodynamic forces and their collective impact on endothelial and vascular responses are not fully understood. Specifically, the role of hydrostatic pressure in the context of flow response is understudied, despite its known significance in vascular development and disease. To address this gap, we developed in vitro models to investigate how pressure influences EC responses to flow. Our study demonstrates that elevated pressure conditions significantly modify shear-induced flow alignment and increase endothelial cell density, a phenomenon often observed in vascular diseases. Utilizing both bulk and single-cell RNA sequencing, we found that while flow is the primary driver of transcriptional changes from static conditions, pressure distinctly modulates this flow response by upregulating gene sets linked to arterial cell phenotypes. Conserved pressure-responsive transcriptional signatures identified in human ECs were upregulated during the onset of circulation in early mouse embryonic vascular development, where pressure was notably associated with transcriptional programs essential to arterial and hemogenic EC fates. Our findings emphasize the necessity of an integrative approach to endothelial cell mechanotransduction, one that encompasses the effects induced by pressure alongside other hemodynamic forces.