Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
2014-07-22 | GSE59620 | GEO
Project description:Soil fungal composition changes with shrub encroachment in the Chihuahuan Desert
Project description:The melting of permafrost and its potential impact on greenhouse gas emissions is a major concern in the context of global warming. The fate of the carbon trapped in permafrost will largely depend on soil physico-chemical characteristics, among which are the quality and quantity of organic matter, pH and water content, and on microbial community composition. In this study, we used microarrays and real-time PCR (qPCR) targeting 16S rRNA genes to characterize the bacterial communities in three different soil types representative of various Arctic settings. The microbiological data were linked to soil physico-chemical characteristics and CO2 production rates. Microarray results indicated that soil characteristics, and especially the soil pH, were important parameters in structuring the bacterial communities at the genera/species levels. Shifts in community structure were also visible at the phyla/class levels, with the soil CO2 production rate being positively correlated to the relative abundance of the Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria. These results indicate that CO2 production in Arctic soils does not only depend on the environmental conditions, but also on the presence of specific groups of bacteria that have the capacity to actively degrade soil carbon.
Project description:Here we have compared adult wildtype (N2) C. elegans gene expression when grown on different bacterial environments/fod sources in an effort to model naturally occuring nematode-bacteria interactions at the Konza Prairie. We hypothesize that human-induced changes to natural environments, such as the addition of nitrogen fertalizer, have effects on the bacterial community in soils and this drives downstream changes in the structure on soil bacterial-feeding nematode community structure. Here we have used transcriptional profiling to identify candidate genes involved in the interaction of nematodes and bacteria in nature.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:The melting of permafrost and its potential impact on greenhouse gas emissions is a major concern in the context of global warming. The fate of the carbon trapped in permafrost will largely depend on soil physico-chemical characteristics, among which are the quality and quantity of organic matter, pH and water content, and on microbial community composition. In this study, we used microarrays and real-time PCR (qPCR) targeting 16S rRNA genes to characterize the bacterial communities in three different soil types representative of various Arctic settings. The microbiological data were linked to soil physico-chemical characteristics and CO2 production rates. Microarray results indicated that soil characteristics, and especially the soil pH, were important parameters in structuring the bacterial communities at the genera/species levels. Shifts in community structure were also visible at the phyla/class levels, with the soil CO2 production rate being positively correlated to the relative abundance of the Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria. These results indicate that CO2 production in Arctic soils does not only depend on the environmental conditions, but also on the presence of specific groups of bacteria that have the capacity to actively degrade soil carbon. Three different soil types from the Canadian high Arctic were sampled at two depths within the active layer of soil and at two sampling dates (winter and summer conditions), for a total of 20 samples.
Project description:The microbiota plays a crucial role in protecting plants from pests and pathogens. The protection provided by the microbiota constitutes not just the plant’s first line of defense, but possibly its most potent one, as experimental disruptions to the microbiota cause plants to succumb to otherwise asymptomatic infections. To understand how microbial plant defense is deployed, we applied a complex and tractable plant-soil-microbiome microcosm. This system, consisting of Arabidopsis plants and a 150-member bacterial synthetic community, provides a platform for the discovery of novel bacterial plant-beneficial traits, under a realistically complex microbial community context. To identify which components of the plant microbiota are critical for plant defense, we deconstructed this microcosm top-down, removing different microbial groups from the community to examine their protective effect on the plant when challenged with the leaf pathogen Pseudomonas syringae. This process of community deconstruction revealed a critical role for the genus Bacillus in protecting the plant from infection. Using plant RNA-seq and bacterial co-culturing experiments, we demonstrated that Bacillus-provided plant protection is independent of plant immune system activation. We also show that the level of plant protection is strongly dependent on the diversity of the protective inoculum. We show that deconstructing the microbiome top-down is a powerful tool for identifying and prioritizing microbial taxa with specific functions within it.
Project description:Anthropogenic activities have dramatically increased the inputs of reactive nitrogen (N) into terrestrial ecosystems, with potentially important effects on the soil microbial community and consequently soil C and N dynamics. Our analysis of microbial communities in soils subjected to 14 years of 7 g N m-2 year-1 Ca(NO3)2 amendment in a Californian grassland showed that the taxonomic composition of bacterial communities, examined by 16S rRNA gene amplicon sequencing, was significantly altered by nitrate amendment, supporting the hypothesis that N amendment- induced increased nutrient availability, yielded more fast-growing bacterial taxa while reduced slow-growing bacterial taxa. Nitrate amendment significantly increased genes associated with labile C degradation (e.g. amyA and xylA) but had no effect or decreased the relative abundances of genes associated with degradation of more recalcitrant C (e.g. mannanase and chitinase), as shown by data from GeoChip targeting a wide variety of functional genes. The abundances of most N cycling genes remained unchanged or decreased except for increases in both the nifH gene (associated with N fixation), and the amoA gene (associated with nitrification) concurrent with increases of ammonia-oxidizing bacteria. Based on those observations, we propose a conceptual model to illustrate how changes of functional microbial communities may correspond to soil C and N accumulation.