Project description:Many existing centromeres may have originated as neocentromeres that activated de novo from non-centromeric regions. However, the evolutionary path from a neocentromere to a mature centromere has been elusive. Here we analyzed the centromeres of six chromosomes that were transferred from maize into oat as the result of an inter-species cross. Centromere size and location were assayed by chromatin immunoprecipitation for the histone variant CENH3, which is a defining feature of functional centromeres. Maize and oat are highly divergent and differ in genome size by four fold. Two isolates of maize chromosome proved to contain neocentromeres in the sense that they had moved from the original site, whereas the remaining seven centromeres (1, 2, 5, 6, 8, 9 and 10) were retained in the same area in both species. In all cases the CENH3-binding domains were dramatically expanded to encompass a larger area in the oat background (~4 Mb) than the average centromere size in maize (~2 Mb). The expansion of maize centromeres appeared to be restricted by the transcription of genes located in regions flanking the original centromeres. The results from the current study provide evidence that (1) centromere size is regulated; (2) centromere sizes tend to be uniform within a species regardless of chromosome size or origin of the centromere; and (3) neocentromeres emerge and expand preferentially in gene poor regions. Our results, together with data from several animal species, suggest that centromere size expansion may be a key factor in the survival of neocentric chromosomes in natural populations.
Project description:The concurrent epigenetic changes during this period of remarkable improvement in maize grain yield remain unknown. Here, we performed MethylC-seq and RNA-seq on 4 related inbred lines with known pedigree information. Analysis of epigenetic changes over the course of historical maize breeding is a valuable new avenue in the exploration for crop improvement. These data lead us to suggest that novel epihaplotypes, in addition to DNA variation, are a substrate of selection during breeding, and that epigenetic variation between parents may also contribute to heterosis in hybrids. Xie, S; et al. 2013. Maize Genetics Conference Abstracts. 54:P326
Project description:The maize B chromosome is a non-essential chromosome and is not detrimental to plant development at low copy numbers. Nondisjunction of the maize B chromosome occurs at the second pollen mitosis. Maize lines containing B chromosomes are widely used in a variety of studies, such as gene dosage effect, centromere function and engineering of artificial chromosomes etc. An understanding of how the B chromosome affect gene expression is required for utilizing the B chromosome as tools for genetic studies and engineering. Therefore, we performed RNA-seq and small-RNA seq experiments on maize lines containing one through seven copies of B chromosomes to examine how gene expression responds to change of B copy numbers.
Project description:High temperature is increasingly becoming one of the prominent environmental factors affecting the growth and development of maize (Zea mays L.). Therefore, it is critical to identify key genes and pathways related to heat stress (HS) tolerance in maize. Here, we identified a heat-resistant (Z58D) and heat-sensitive (AF171) maize inbred lines at seedling stage. Transcriptomic analysis identified 3,006 differentially expressed genes (DEGs) in AF171 and 4,273 DEGs in Z58D under HS treatments, respectively. Subsequently, GO enrichment analysis showed that shared upregulated genes in AF171 and Z58D involved in response to HS, protein folding, abiotic and temperature stimulus pathway. Moreover, the comparison between the two inbred lines under HS showed that response to heat and response to temperature stimulus significantly overrepresented for the 1,234 upregulated genes. Furthermore, commonly upregulated genes in Z58D and AF171 had higher expression level in Z58D than AF171. In addition, maize inbred CIMBL55 had been verified to be more tolerant than B73 and commonly upregulated genes had higher expression level in CIMBL55 than B73 under HS. The consistent results indicated that heat-resistant inbred lines may coordinate the remarkable expression of genes in order to recover from HS. Additionally, 35 DEGs were conserved among 5 inbred lines by a comparative transcriptomic analysis. Most of them were more pronounced in Z58D than AF171 at expression level. Those candidate genes may confer thermotolerance in maize.
Project description:Purpose: We aim to reveal maize transcriptomic changes in wild-type and Gβ knockout lines. Methods: RNA-seq was used to reveal transcriptome of maize biological replicates of wild-type and Gβ knockout lines. Results: Differnentically expressed transcritps were identified by the comparison of biological replicates of wild-type and Gβ knockout lines. Conclusions: We identified differentially expressed genes in Gβ knockout lines.
Project description:The data set submitted here contains the raw SNP genotyping data obtained from the analysis of 24 biparental segregating maize (Zea mays L.) populations and their respective parents. The processed and filtered data were used to construct genetic linkage maps which we used in our study of variation of recombination rate in maize. In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation. In our study, we report on the variation of recombination rates between 22 European maize inbred lines that belong to the Dent and Flint gene pools. We genotyped 23 doubled-haploid populations derived from crosses between these lines with a 50k-SNP array and constructed high-density genetic maps, showing good correspondence with the maize B73 genome sequence assembly. By aligning each genetic map to the B73 sequence, we obtained the recombination rates along chromosomes specific to each population. We identified significant differences in recombination rates at the genome-wide, chromosome, and intrachromosomal levels between populations, as well as significant variation for genome-wide recombination rates among maize lines. Crossover interference analysis using a two-pathway modeling framework revealed a negative association between recombination rate and interference strength. To our knowledge, the present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes. Differences found in recombination rates will allow for selection of high or low recombining lines in crossing programs. Our methodology should pave the way for precise identification of genes controlling recombination rates in maize and other organisms.
Project description:Purpose: We aim to reveal maize transcriptomic changes in wild-type and lncRNA GARR2 knockout lines. Methods: RNA-seq was used to reveal transcriptome of maize biological replicates of wild-type and lncRNA GARR2 knockout lines. Results: Differnentically expressed transcritps were identified by the comparison of biological replicates of wild-type and lncRNA GARR2 knockout lines. Conclusions: We identified differentially expressed genes in lncRNA GARR2 knockout lines.
Project description:<p>Cold stress negatively affects maize (<em>Zea mays</em> L.) growth, development and yield. Metabolic adjustments contribute to the adaptation of maize under cold stress. We show here that the transcription factor INDUCER OF CBF EXPRESSION 1 (ZmICE1) plays a prominent role in reprogramming amino acid metabolome and <em>COLD-RESPONSIVE</em> (<em>COR</em>) genes during cold stress in maize. Derivatives of amino acids glutamate/asparagine (Glu/Asn) induce a burst of mitochondrial reactive oxygen species, which suppress the cold-mediated induction of <em>DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 1</em> (<em>ZmDREB1</em>) genes and impair cold tolerance. ZmICE1 blocks this negative regulation of cold tolerance by directly repressing the expression of the key Glu/Asn biosynthesis genes, <em>ASPARAGINE SYNTHETASEs</em>. Moreover, ZmICE1 directly regulates the expression of <em>DREB1s</em>. Natural variation at the <em>ZmICE1</em> promoter determines the binding affinity of the transcriptional activator ZmMYB39, a positive regulator of cold tolerance in maize, resulting in different degrees of <em>ZmICE1</em> transcription and cold tolerance across inbred lines. This study thus unravels a mechanism of cold tolerance in maize and provides potential targets for engineering cold-tolerant varieties.</p>
Project description:Methylation of chromosomal DNA in animals and plants is a fundamental mechanism of epigenetic regulation, and the maize genome, with its diverse complement of transposons and repeats, is a paradigm for transgenerational mechanisms such as paramutation and imprinting. We have determined the genome-wide cytosine methylation map of two maize inbred lines, B73 and Mo17, at high coverage and at single nucleotide resolution. Transposon methylation is highest in CG (65%) and CHG (50%) contexts (where H = A, C or T), while methylation in CHH (5%) contexts is guided by 24nt small interfering RNA (siRNA), and not by 21-22nt siRNA. We have found that CG (8%) methylation seems to deter insertion of Mutator transposons into exons, while CHH and CHG methylation at splice donor and acceptor sites strongly inhibits RNA splicing. Methylation differences between parents are inherited in recombinant inbred lines, but methylation switches, guided by siRNA, are widespread and persist for up to 8 generations. These differences influence splicing, and recurrent switching suggest that paramutation is much more common than previously supposed, and may contribute to heterosis. Our results provide a comprehensive high resolution resource for maize genome methylation, as well as a map of recurrent transgenerational epigenetic shifts (paramutation) in the two most commonly used inbred maize lines. Genome-wide cytosine methylation map in 2 maize strains by bisulfite sequencing, and RNA and small RNA profiles in the same tissue using Illumina platform.