Project description:In plants, an increase in resource allocation to growth (primary metabolism) associated with the presence of neighbors is likely to reduce defense-related production (secondary metabolism), making plants more vulnerable to herbivory. Even though there is increasing evidence supporting this “trade-off hypothesis”, the underlying mechanisms are still unclear. Far red (FR) radiation reflected from plant tissues serves as an early warning signal of future competition, triggering a suite of plastic morphological adjustments that improve plant’s ability to compete for light in crowded populations. Recent evidence from our lab showed that, when competition signals are present, plant defenses are severely reduced. Besides direct effects of herbivory and competition signals on target plants, second order effects occurs on neighboring plants through plant volatiles (PVs) communication. PVs play a key role in plant-plant and plant-insect interactions, changing its content and composition in response to environmental conditions. To increase our understanding of the molecular mechanisms underlying those interacting signaling webs, we performed a field study with tomato plants (cv Moneymaker), in which plants of EMITTER plots (six plants plot-1) were subjected to herbivory (nine larvae of Spodoptera eridania plant-1) and competition signals (increased FR radiation) in a factorial design. Light treatment started 28 days after sowing (DAS), and herbivory treatment and volatiles conduction started 34 DAS. Volatiles were conducted from EMITTER to RECEIVER plots (five plants plot-1) using a 5 inch, 1.4 m long tube fitted with a computer-type fan. 40 and 45 DAS, larval performance was measured on EMITTER plots as well as naturally-occurring insect colonization on RECEIVER plots. Finally (46 DAS), samples for bulk phenolic content were taken on every plot, and plant material from 4th and 5th leaves was collected for microarray analysis. There were three real biological replicates. Keywords: Reference design
Project description:Treatment comparison of Guinea grass planted at University of Sao Paulo Brazil 4 Ambient temp and CO2 plots, 4 elevated CO2 (600 ppm) plots, 4 elevated Temp plots (+2C),4 elevated CO2 and Temp plots. Untargeted metabolomics(GC-MS),de novo transcriptomics, and RNAseq taken at 30(A)(2014-05-22) and 50(B)(2014-07-14)days post treatment exposure. Dried leaf material sent to Uni Illinois-UC. GC-MS protocol followed as stated in Ulanov et al. (2010) J of Plant Phys.
Project description:HCC827 cells were barcoded using the ClonTracer lentiviral barcode library such that the majority of cells were infected with a single barcode. One million cells were expanded to ~120 million cells and split into 8 HYPERfasks. Two HYPERfasks were grown under DMSO and grown until confluence. In six HYPERfasks cells were grown under a GI90 concentration of one of two different inhibitors, gefitinib and trametinib (3 HYPERfasks each). Cells achieved confluence at 4 and 9 weeks for gefitinib and trametinib respectively. During this time, the medium and inhibitor were replenished weekly and DNA was extracted from the medium to track barcode content from dying cells.
Project description:affy_tour_2010_21 - affy_tour_2010_21 - The aim of this project is to assess the possibility of implementing transcriptomic studies on sunflower plants grown in field assays. Data obtained from plants under drought in the glasshouse have already obtained. We intend to use these results as a template and see if the field offers the possibility of carrying these studies. In order to do so, treatment-effect as well as intra and inter-plot variability will be assessed.-Plants were grown in the field. The assay was arranged in plots with one genotype per plot. The assay was divided in two identically seized parts, containing the same number of plots. Starting from the capitule, flower # -3 was harvested in every plant. In some cases, several plants from the same plot were harvested. In other, plants from different plots were harvested. We expect that this sampling will allow us to assess intra- as well as inter-plot variability in the analysis of drought-driven gene expression modulation.
Project description:To investigate immunoediting at the primary tumour, we used DNA barcoding combined with NGS. By stably integrating 4T1 murine cancer cell line with 250000 unique DNA barcodes (1 barcode per cell), we can trace how barcode (and therefore subclonal) diversity changes over time and after treatment with immunotherapy.
Project description:To investigate immunoediting at the primary tumour, we used DNA barcoding combined with NGS. By stably integrating 4T1 murine cancer cell line with 5000 unique DNA barcodes (1 barcode per cell), we can trace how barcode (and therefore subclonal) diversity changes over time and after treatment with immunotherapy.
Project description:To investigate immunoediting at the primary tumour, we used DNA barcoding combined with NGS. By stably integrating 4T1 murine cancer cell line with 5000 unique DNA barcodes (1 barcode per cell), we can trace how barcode (and therefore subclonal) diversity changes over time and after treatment with immunotherapy.
Project description:To investigate immunoediting at the primary tumour, we used DNA barcoding combined with NGS. By stably integrating 4T1 murine cancer cell line with 5000 unique DNA barcodes (1 barcode per cell), we can trace how barcode (and therefore subclonal) diversity changes over time and after treatment with immunotherapy.