Project description:Metagenomic investigation of the bacterial microbiota associated to Haematococcus spp. upon infection by Paraphysoderma sedebokerense
Project description:The blastocladialean fungus Paraphysoderma sedebokerense parasitizes three microalgae species of economic interest: Haematococcus pluvialis, Chromochloris zofingiensis and Scenedesmus dimorphus. For the first time, we characterized the developmental stages of isolated fungal propagules in H. pluvialis co-culture, finding a generation time of 16 h. We established a patho-system to compare the infection in the three different host species for 48 h, with two different setups to quantify parameters of the infection and parameters of the parasite fitness. The prevalence of the parasite in H. pluvialis and C. zofingiensis cultures was 100%, but only 20% in S. dimorphus culture. The infection of S. dimorphus not only reached lower prevalence but was also qualitatively different; the infection developed preferentially on senescent cells and more resting cysts were produced, being consistent with a reservoir host. In addition, we carried out cross infection experiments and the inoculation of a mixed algal culture containing the three microalgae, to determine the susceptibility of the host species and to investigate the preference of P. sedebokerense for these microalgae. The three tested microalgae showed different susceptibility to P. sedebokerense, which correlates with blastoclad's preference to the host in the following order: H. pluvialis > C. zofingiensis > S. dimorphus.
Project description:The blastocladialean fungus Paraphysoderma sedebokerense Boussiba, Zarka and James is a devastating pathogen of the commercially valuable green microalga Haematococcus pluvialis, a natural source of the carotenoid pigment astaxanthin. First identified in commercial Haematococcus cultivation facilities, P. sedebokerense is hypothesised to have a complex life cycle that switches between a vegetative and a resting phase depending on favourable or unfavourable growth conditions. Rather unusually for blastocladialean fungi, P. sedebokerense was described as lacking flagellated zoospores and only propagating via aplanosporic amoeboid cells. However, during repeated microscopic observation of P. sedebokerense cultivated in optimal conditions, we detected fast-swimming, transiently uniflagellated zoospores which rapidly transform into infectious amoeboid swarmers, the existence of which suggests a closer than previously thought relatedness of P. sedebokerense to its sister genera Physoderma and Urophlyctis. Additionally, we found some morphological and physiological differences between amoeboid swarmers and discuss hypotheses about their significance. These amoeboid and flagellated propagules are key to the dissemination of P. sedebokerense and are probably also the life stages most vulnerable to adverse environmental conditions. They are therefore a prime target for the development of disease management protocols in industrial cultivation facilities, a goal which requires a detailed understanding of their physiology.
Project description:Glutamine synthetase (GlnS) is a key enzyme in nitrogen metabolism. We investigated the effect of the GlnS inhibitor glufosinate on the infection of H. lacustris by the blastocladialean fungus P. sedebokerense, assuming that interfering with the host nitrogen metabolism will affect the success of the parasite. Complete inhibition of infection, which could be bypassed by the GlnS product glutamine, was observed at millimolar concentrations of glufosinate. However, this effect of glufosinate was attributed to its direct interaction with the blastoclad and not the host, which results in development and growth inhibition of the blastoclad. In our P. sedebokerense draft genome, we found that the sequence of GlnS is related to another fungal GlnS, type III, found in many poor known phyla of fungi, including Blastocladiomycota and Chytridiomycota, and absent in the main subkingdom of fungi, the Dikarya. We further tested the ability of the blastoclad to utilize nitrate and ammonia as inorganic nitrogen sources and glutamine for growth. We found that P. sedebokerense equally use ammonia and glutamine and use also nitrate, but with less efficiency. Altogether, our results show that GlnS type III is mandatory for the development and growth of P. sedebokerense and could be an efficient target to develop strategies for the control of the fungal parasite of H. lacustris.