Project description:Bacterial populations associated with the surfaces of cranberry flowers and early fruits in wetlands bogs in Eastern Massachusetts were examined using pyrosequencing. The composition of bacterial populations was highly dependent on sample site, but the dominant phyla on both flower and berry surfaces were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes.
Project description:After a freezing event, it can be challenging to extrapolate levels of freezing damage to plant growth viability based on the presence or absence of symptoms in specific bud tissues. This study investigated the relationship between freezing damage in terminal buds during ecodormancy and their viability during the subsequent growing season. We identified the bud structure that best explained this relationship, and developed a model to explain the changes in bud cold hardiness. Vertical shoots (uprights) of Vaccinium macrocarpon Ait. were sampled in central Wisconsin during Spring of 2018 and 2019. Sets of uprights with terminal buds were subjected to controlled freezing tests, followed by either visual freeze damage evaluation or assessment of shoot viability by growth assays. We determined the Browning Lethal-Temperature50 (BLT50 ), as temperature for 50% damage (tissue browning) at each bud structure, and Growth Lethal-Temperature50 (GLT50 ) temperature where 50% reduction in growth viability occurred. Two models were constructed to explain: (1) bud structure damage and growth viability, and (2) GLT50 's seasonal changes, representing the cold hardiness variations, and environmental factors. The correlation between the BLT50 and GLT50 values was closest for the bud scales and bud axis, indicating the better correspondence between levels of freezing damage with the impact on the growth potential. In addition, the latter was also the most suitable candidate for modeling due to easier damage evaluation. The freezing stress damage of the bud axis explained comparatively best the resulting growth viability. Seasonal changes in GLT50 were best explained by temperature indices based on daily minimum and on maximum temperatures over 10-day periods. However, among the model components, daily maximum temperatures had the greatest influence on V. macrocarpon cold hardiness changes during ecodormancy.
Project description:Commercial lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium macrocarpon Ait.) crops benefit from the presence of honey bee (Apis mellifera L.) for pollination. Unfortunately, beekeepers are observing negative impacts of pollination services on honey bee colonies. In this study, we investigated three beekeeping management strategies (MS) and measured their impact on honey bee colony health and development. Experimental groups (five colonies/MS) were: A) Control farmland honey producing MS (control MS); B) Blueberry pollination MS (blueberry MS); C) Cranberry pollination MS (cranberry MS) and D) Double pollination MS, blueberry followed by cranberry (double MS). Our goals were to 1) compare floral abundance and attractiveness of foraging areas to honey bees between apiaries using a Geographic Information System, and 2) compare honey bee colony health status and population development between MS during a complete beekeeping season. Our results show significantly lower floral abundance and honey bee attractiveness of foraging areas during cranberry pollination compared to the other environments. The blueberry pollination site seemed to significantly reduce brood population in the colonies who provided those services (blueberry MS and double MS). The cranberry pollination site seemed to significantly reduce colony weight gain (cranberry MS and double MS) and induce a significantly higher winter mortality rate (cranberry MS). We also measured significantly higher levels of Black queen cell virus and Sacbrood virus in the MS providing cranberry pollination (cranberry MS and double MS).
Project description:Pest management of emerging pests can be challenging because very little fundamental knowledge is available to inform management strategies. One such pest, the red-headed flea beetle Systena frontalis (Fabricius) (Coleoptera: Chrysomelidae), is increasingly being identified as a pest of concern in cranberries Vaccinium macrocarpon Aiton (Ericales: Ericaceae). To improve our understanding of this pest and to develop more targeted management programs, we conducted field and laboratory studies to characterize the development, seasonal emergence patterns, and density-dependent plant injury. We found that significantly more flea beetle eggs hatched when exposed to sustained cold treatment between 0 and 5°C for 15 wk than at warmer temperatures, and for shorter and longer cold-period durations. The adults emerged sporadically over the summer, were patchily distributed, fed on both fruit and foliage, and preferentially fed on new plant growth. Using soil cores, we found eggs and larvae located relatively deep (>30 cm) in the soil. These patterns indicate that S. frontalis likely overwinters as eggs, and that targeting the larval stage may be the most effective management approach. Despite the cryptic nature of the larvae, continuing to improve our understanding of this life stage will be critical to optimizing control strategies.
Project description:BACKGROUND:Cranberry (Vaccinium macrocarpon L.) fruit quality traits encompass many properties. Although visual appearance and fruit nutritional constitution have usually been the most important attributes, cranberry textural properties such as firmness have recently gained importance in the industry. Fruit firmness has become a quality standard due to the recent demand increase for sweetened and dried cranberries (SDC), which are currently the most profitable cranberry product. Traditionally, this trait has been measured by the cranberry industry using compression tests; however, it is poorly understood how fruit firmness is influenced by other characteristics. RESULTS:In this study, we developed a high-throughput computer-vision method to measure the internal structure of cranberry fruit, which may in turn influence cranberry fruit firmness. We measured the internal structure of 16 cranberry cultivars measured over a 40-day period, representing more than 3000 individual fruit evaluated for 10 different traits. The internal structure data paired with fruit firmness values at each evaluation period allowed us to explore the correlations between firmness and internal morphological characteristics. CONCLUSIONS:Our study highlights the potential use of internal structure and firmness data as a decision-making tool for cranberry processing, especially to determine optimal harvest times and ensure high quality fruit. In particular, this study introduces novel methods to define key parameters of cranberry fruit that have not been characterized in cranberry yet. This project will aid in the future evaluation of cranberry cultivars for in SDC production.
Project description:Breeding efforts in the American cranberry (Vaccinium macrocarpon Ait.), a North American perennial fruit crop of great importance, have been hampered by the limited genetic and phenotypic variability observed among cultivars and experimental materials. Most of the cultivars commercially used by cranberry growers today were derived from a few wild accessions bred in the 1950s. In different crops, wild germplasm has been used as an important genetic resource to incorporate novel traits and increase the phenotypic diversity of breeding materials. Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh. and V. oxycoccos L., two closely related species, may be cross-compatible with the American cranberry, and could be useful to improve fruit quality such as phytochemical content. Furthermore, given their northern distribution, they could also help develop cold hardy cultivars. Although these species have previously been analyzed in diversity studies, genomic characterization and comparative studies are still lacking. In this study, we sequenced and assembled the organelle genomes of the cultivated American cranberry and its wild relative, V. microcarpum. PacBio sequencing technology allowed us to assemble both mitochondrial and plastid genomes at very high coverage and in a single circular scaffold. A comparative analysis revealed that the mitochondrial genome sequences were identical between both species and that the plastids presented only two synonymous single nucleotide polymorphisms (SNPs). Moreover, the Illumina resequencing of additional accessions of V. microcarpum and V. oxycoccos revealed high genetic variation in both species. Based on these results, we provided a hypothesis involving the extension and dynamics of the last glaciation period in North America, and how this could have shaped the distribution and dispersal of V. microcarpum. Finally, we provided important data regarding the polyploid origin of V. oxycoccos.
Project description:The American cranberry (Vaccinium macrocarpon Ait.) is an iconic North American fruit crop of great cultural and economic importance. Cranberry can be considered a fruit crop model due to its unique fruit nutrient composition, overlapping generations, recent domestication, both sexual and asexual reproduction modes, and the existence of cross-compatible wild species. Development of cranberry molecular resources started very recently; however, further genetic studies are now being limited by the lack of a high-quality genome assembly. Here, we report the first chromosome-scale genome assembly of cranberry, cultivar Stevens, and a draft genome of its close wild relative species Vaccinium microcarpum. More than 92% of the estimated cranberry genome size (492 Mb) was assembled into 12 chromosomes, which enabled gene model prediction and chromosome-level comparative genomics. Our analysis revealed two polyploidization events, the ancient ?-triplication, and a more recent whole genome duplication shared with other members of the Ericaeae, Theaceae and Actinidiaceae families approximately 61 Mya. Furthermore, comparative genomics within the Vaccinium genus suggested cranberry-V. microcarpum divergence occurred 4.5 Mya, following their divergence from blueberry 10.4 Mya, which agrees with morphological differences between these species and previously identified duplication events. Finally, we identified a cluster of subgroup-6 R2R3 MYB transcription factors within a genomic region spanning a large QTL for anthocyanin variation in cranberry fruit. Phylogenetic analysis suggested these genes likely act as anthocyanin biosynthesis regulators in cranberry. Undoubtedly, these new cranberry genomic resources will facilitate the dissection of the genetic mechanisms governing agronomic traits and further breeding efforts at the molecular level.
Project description:Real-time fluorescent quantitative PCR (qRT-PCR) is often chosen as an effective experimental method for analyzing gene expression. However, an appropriate reference gene as a standard is needed to obtain accurate gene expression data. To date, no internal reference genes have been reported for research on cranberries. Expanding the selection of internal reference genes for cranberry will enable reliable gene expression analysis, and, at the same time, can also lay a solid foundation for revealing the biological characteristics of cranberry. Here, we selected ten candidate reference gene families and used three statistical software tools-geNorm, NormFinder and BestKeeper-to evaluate their expression stability under the influence of different experimental factors. The results showed that protein phosphatase 2A regulatory subunit (PP2A) or RNA helicase-like 8 (RH 8) was the best choice for an internal reference gene when analyzing different cranberry cultivars. In two sample sets comprising different cranberry organs and three abiotic stress treatments, sand family protein (SAND) was the best choice as a reference gene. In this study, we screened genes that are stably expressed under the influence of various experimental factors by qRT-PCR. Our results will guide future studies involving gene expression analysis of cranberry.
Project description:The American cranberry, Vaccinium macrocarpon Ait., is an economically important North American fruit crop that is consumed because of its unique flavor and potential health benefits. However, a lack of abundant, genome-wide molecular markers has limited the adoption of modern molecular assisted selection approaches in cranberry breeding programs. To increase the number of available markers in the species, this study identified, tested, and validated microsatellite markers from existing nuclear and transcriptome sequencing data. In total, new primers were designed, synthesized, and tested for 979 SSR loci; 697 of the markers amplified allele patterns consistent with single locus segregation in a diploid organism and were considered polymorphic. Of the 697 polymorphic loci, 507 were selected for additional genetic diversity and segregation analyses in 29 cranberry genotypes. More than 95% of the 507 loci did not display segregation distortion at the p < 0.05 level, and contained moderate to high levels of polymorphism with a polymorphic information content >0.25. This comprehensive collection of developed and validated microsatellite loci represents a substantial addition to the molecular tools available for geneticists, genomicists, and breeders in cranberry and Vaccinium.