Project description:The precipitous drop in the cost of genomic sequencing and the concomitant availability of computational methods for comparing genome-level data has made the accurate taxonomic placement of bacteria affordable and relatively rapid. Inaccurate taxonomic placement of bacteria has serious implications in clinical, environmental, and regulatory microbiology, but it can also adversely affect interpretation of research results. The quorum biosensor strain CV026 was derived from an isolate of Chromobacterium that was labeled as C. violaceum ATCC 31532, and is catalogued by the ATCC under that species name. Nearly 200 papers have been published that use CV026 as an indicator for quorum sensing activity in many Gram negative bacteria, but the inability of C. violaceum strains to complement the quorum sensing mutation in CV026 has called the taxonomic placement of the parent strain into question. We used molecular phylogeny and a large number of metabolic and phenotypic characters to demonstrate that Chromobacterium strain ATCC 31532 is a member of species Chromobacterium subtsugae.
Project description:The genome of Chromobacterium subtsugae strain PRAA4-1, a betaproteobacterium producing insecticidal compounds, was sequenced and compared with the genome of C. violaceum ATCC 12472. The genome of C. subtsugae displayed a reduction in genes devoted to capsular and extracellular polysaccharide, possessed no genes encoding nitrate reductases, and exhibited many more phage-related sequences than were observed for C. violaceum. The genomes of both species possess a number of gene clusters predicted to encode biosynthetic complexes for secondary metabolites; these clusters suggest they produce overlapping, but distinct assortments of metabolites.
Project description:Antibiotics produced by bacteria play important roles in microbial interactions and competition Antibiosis can induce resistance mechanisms in target organisms, and at sublethal doses, antibiotics have been shown to globally alter gene expression patterns. Here, we show that hygromycin A from Streptomyces sp. strain 2AW. induces Chromobacterium violaceum ATCC 31532 to produce the purple antibiotic violacein. Sublethal doses of other antibiotics that similarly target the polypeptide elongation step of translation likewise induced violacein production, unlike antibiotics with different targets. C. violaceum biofilm formation and virulence against Drosophila melanogaster were also induced by translation-inhibiting antibiotics, and we identified an antibiotic-induced response (air) two-component regulatory system that is required for these responses. Genetic analyses indicated a connection between the Air system, quorum-dependent signaling, and the negative regulator VioS, leading us to propose a model for induction of violacein production. This work suggests a novel mechanism of interspecies interaction in which a bacterium produces an antibiotic in response to inhibition by another bacterium and supports the role of antibiotics as signal molecules.IMPORTANCE Secondary metabolites play important roles in microbial communities, but their natural functions are often unknown and may be more complex than appreciated. While compounds with antibiotic activity are often assumed to underlie microbial competition, they may alternatively act as signal molecules. In either scenario, microorganisms might evolve responses to sublethal concentrations of these metabolites, either to protect themselves from inhibition or to change certain behaviors in response to the local abundance of another species. Here, we report that violacein production by C. violaceum ATCC 31532 is induced in response to hygromycin A from Streptomyces sp. 2AW, and we show that this response is dependent on inhibition of translational polypeptide elongation and a previously uncharacterized two-component regulatory system. The breadth of the transcriptional response beyond violacein induction suggests a surprisingly complex metabolite-mediated microbe-microbe interaction and supports the hypothesis that antibiotics evolved as signal molecules. These novel insights will inform predictive models of soil community dynamics and the unintended effects of clinical antibiotic administration.
Project description:Violacein, an indole-derived purple-colored natural pigment isolated from Chromobacterium violaceum has shown multiple biological activities. In this study, we report that violacein activates murine macrophages through the up-regulation of TNF-α expression at non-cytotoxic concentrations (2 µmol/L). This was evaluated by measurement of TNF-α expression using real-time qRT-PCR. In addition, we obtained evidence of the molecular mechanism of activation by determining the mRNA expression pattern upon treatment with violacein. Interestingly, the mRNA expression pattern also allowed us to observe that incubation with violacein caused activation of pathways related with an immune and inflammatory response. Together, our data indicate that violacein activates the TLR8 receptor signaling pathway, and in consequence induces production of inflammatory cytokines such as TNF-α, CCL3 and CCL4 and of negative regulators of TLR signaling such as AP20, IRG1, IκBα and IκBε. Finally, we studied the interaction of TLR8 with violacein in silico, and obtained evidence that violacein could bind to TLR8 in a similar fashion to imidazoquinoline compounds. Therefore, our results indicate that violacein could be a candidate to be applied in immune therapy.
Project description:Here, we described a novel transcriptional regulator belonging to the MarR family that we named OsbR (oxidative stress response and biofilm formation regulator) in the opportunistic pathogen Chromobacterium violaceum. Transcriptome profiling by DNA microarray using strains with deletion or overexpression of osbR showed that OsbR exert a global regulatory role in C. violaceum, regulating genes involved in oxidative stress response, nitrate reduction, biofilm formation, and several metabolic pathways. EMSA assays showed that OsbR binds to the promoter regions of several OsbR-regulated genes and the in vitro DNA binding activity was inhibited by oxidants. We demonstrated that the overexpression of osbR caused activation of ohrA even in the presence of the repressor OhrR, which resulted in improved growth under organic hydroperoxide treatment. We showed that the proper regulation of the nar genes by OsbR ensures an optimal growth of C. violaceum under anaerobic conditions by tuning the reduction of nitrate to nitrite. Finally, the osbR overexpressing strain showed reduction in biofilm formation and this phenotype correlated with the OsbR-mediated repression of two gene clusters encoding putative adhesins.
Project description:Antibiotic resistance can arise by several mechanisms, including mutation in transcription factors that regulate drug efflux pumps. In this work, we identified EmrR as a MarR family transcription factor involved in antibiotic resistance in Chromobacterium violaceum, a Gram-negative bacterium that occurs in soil and water and can act as a human opportunistic pathogen. Antibiogram and minimum inhibitory concentration (MIC) assays showed that the ΔemrR mutant presented increased resistance to the antibiotic nalidixic acid in respect to the wild-type strain. The emrR gene is near to a putative operon emrCAB, which encode the efflux pump EmrCAB. DNA Microarray analysis showed that EmrR represses the emrCAB operon and some other putative transporters. Northern blot assays validated that EmrR represses the emrCAB operon and this repression can be released by salicylate, but not other compounds such as nalidixic acid or ethidium bromide. Electrophoretic mobility shift assays (EMSA) showed that EmrR binds directly to the promoter regions of emrR, emrCAB and other genes to exert negative regulation. Therefore, in response to compounds as salicylate, EmrR derepresses the operon emrCAB causing overexpression of the efflux pump EmrCAB and increased resistance to nalidixic acid in C. violaceum.
Project description:Chromobacterium violaceum is an abundant component of the soil and water microbiota in tropical and subtropical regions around the world. For many years, it was mainly known as a producer of violacein and as a reporter for the discovery of quorum sensing molecules. However, C. violaceum has recently emerged as an important model of an environmental opportunistic pathogen. Its high virulence in human infections and a mouse infection model involves the possession of several predicted virulence traits, including two type III secretion systems (T3SSs). In this article, in addition to providing an update on the new clinical cases of human C. violaceum infections, we will focus on recent advances in understanding the molecular mechanisms regarding C. violaceum pathogenesis. It has been demonstrated that the C. violaceum Cpi-1 T3SS plays a pivotal role in interaction with host cells. It is required for the secretion of effector proteins and is the agonist recognized by the Nod-like receptor CARD domain-containing protein 4 (NLRC4) inflammasome from innate immune cells. Pyroptosis and its release of hepatocytes for killing by neutrophils are key events required for the clearance of C. violaceum. Given the prominent role of T3SSs in C. violaceum virulence, we examine their occurrence in the Chromobacterium genus, taking advantage of several draft genome sequences of Chromobacterium species that have recently become available. Our finding that the Cpi-1 T3SS is widespread among Chromobacterium species points toward the pathogenic potential of this genus for humans or to novel roles of the T3SS in the interaction of Chromobacterium species with other organisms.
Project description:We announce the draft genome sequence for Chromobacterium violaceum strain CV017, used as a model and tool to understand acyl-homoserine lactone-dependent quorum sensing. The assembly consists of 4,774,638-bp contained in 211 scaffolds.