Project description:We identified hankyphage prophages within B. thetaiotaomicron isolates gathered from French hospitals. We extracted genomic DNA from an overnight culture from a single colony of each strain and sequenced them using Nanopore sequencing using the Plasmidsaurus platform. This long-read approach helped the assembly of the phages and determination of the hankyphage ends. We also improved the annotation of the reference hankyphage (hankyphage p00 from P. dorei HM719) using a structural prediction approach and annotated our B. thetaiotaomicron hankyphages using this new annotation. In this project we upload the genomic raw reads of nanopore sequencing of our hankyphage-bearing B. thetaiotaomicron collection (jmh strains) and the processed assembled hankyphages.
Project description:The study is intended to collect specimens to support the application of genome analysis technologies, including large-scale genome sequencing. This study will ultimately provide cancer researchers with specimens that they can use to develop comprehensive catalogs of genomic information on at least 50 types of human cancer. The study will create a resource available to the worldwide research community that could be used to identify and accelerate the development of new diagnostic and prognostic markers, new targets for pharmaceutical interventions, and new cancer prevention and treatment strategies. This study will be a competitive enrollment study conducted at multiple institutions.
Project description:Lipomyces genome scale model based on the Lipomyces starkeyi NRRL-11557 genome.
Published in:
Genome-Scale Model Development and Genomic Sequencing of the Oleaginous Clade Lipomyces
Frontiers in Bioengineering and Biotechnology
Industrial Biotechnology
Volume 12 - 2024 | doi: 10.3389/fbioe.2024.1356551
Project description:Interventions: Genomic test CANCERPLEX-JP OncoGuide NCC oncopanel system FndationONe CDx genome profile GUARDANT360 MSI Analysis System BRACAnalysis
Primary outcome(s): Development of genome database
Study Design: Single arm Non-randomized
Project description:Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.
Project description:Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.
Project description:In this study, we have applied the top-down approach to reduce the genome of B. subtilis in order to obtain minimal strains with robust growth on complex medium at 37°C. For this purpose, we have evaluated the function of each gene of the B. subtilis genome and identified essential, important and dispensable genomic regions. Using an efficient markerless and scarless deletion method and a system allowing induction of genetic competence in the complete cell population, we have constructed two genome-reduced strains lacking about 36% of dispensable genetic information. Multi-omics analyses with the genome-reduced strains revealed substantial changes in the transcriptome, the proteome and in the metabolome. The massive reorganization of metabolism in the two genome-reduced strains can be explained by the underlying genotypes that were determined by genome re-sequencing. Moreover, the transcriptome and proteome analyses uncovered novel dispensable genomic regions that can be removed to further streamline the B. subtilis genome. In conclusion, both minimal strains show interesting metabolic features and they serve as excellent starting points to generate an ultimate reduced-genome B. subtilis cell containing only genes required for robust growth on complex medium.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).