Project description:The salmon gill poxvirus (SGPV) is a large DNA virus that infects gill epithelial cells in Atlantic salmon and is associated with acute high mortality disease outbreaks in aquaculture. The pathological effects of SGPV infection include gill epithelial apoptosis in the acute phase of the disease and hyperplasia of gill epithelial cells in surviving fish, causing damage to the gill respiratory surface. Transcriptome responses to virus were assessed in gills at different stages of disease
Project description:Amoebic Gill Disease (AGD), caused by the ectoparasite Paramoeba perurans (P. perurans) is characterised by hyperplasia of the gill epithelium and lamellar fusion and has become recognised as one of the most significant health threats in salmon farming . In this study, the gill and serum proteomes of Atlantic salmon inoculated with P. perurans, across multiple timepoints post-challenge, were analysed. The expression of proteins with established roles in innate immunity, across various timepoints, was compared with expression in naïve Atlantic salmon to elucidate the host response to gill colonisation.
Project description:Fish gills are not only the respiratory organ, but also essential for ion-regulation, acid-base control, detoxification, waste excretion and host defense. Multifactorial gill diseases are common in farmed Atlantic salmon, and still poorly understood. Understanding gill pathophysiology is of paramount importance, but the sacrifice of large numbers of experimental animals for this purpose should be avoided. Therefore, in vitro models, such as cell lines, are urgently required to replace fish trials. An Atlantic salmon gill epithelial cell line, ASG-10, was established at the Norwegian Veterinary institute in 2018. This cell line forms a monolayer expressing cytokeratin, e-cadherin and desmosomes, hallmarks of a functional epithelial barrier. To determine the value of ASG-10 for comparative studies of gill functions, the characterization of ASG-10 was taken one step further by performing functional assays and comparing the cell proteome and transcriptome with those of gills from juvenile freshwater Atlantic salmon. The ASG-10 cell line appear to be a homogenous cell line consisting of epithelial cells, which express tight junction proteins. We demonstrated that ASG-10 forms a barrier, both alone and in co-culture with the Atlantic salmon gill fibroblast cell line ASG- 13. ASG-10 cells can phagocytose and express several ATP-binding cassette transport proteins. Additionally, ASG-10 expresses genes involved in biotransformation of xenobiotics and immune responses. Taken together, this study provides an overview of functions that can be studied using ASG-10, which will be an important contribution to in vitro gill epithelial research of Atlantic salmon.
Project description:The transcriptome response of 12 amoebic gill disease (AGD) affected Atlantic salmon were compared to 6 AGD naive Atlantic salmon at 19 days post infection. The transcriptome response was examined in the gill, liver and anterior kidney.
Project description:We compared gill transcriptomes of two groups of Atlantic salmon, one designated putatively resistant, and one designated susceptible to amoebic gill disease (AGD).
Project description:Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of Atlantic salmon smolts treated with nonylphenol compared to control smolts. Nonylphenol treatment was confirmed using physiological assays: nonylphenol-treatment significantly decreased gill Na+,K+-ATPase activity and plasma cortisol and T3 levels.
Project description:Gills of teleost fish represent a vital multifunctional organ; however, they are subjected to environmental stressors, causing gill damage. Gill damage is associated with significant losses in the Atlantic salmon aquaculture industry. Gill disorders due to environmental stressors are exacerbated by global environmental changes, especially with open-net pen aquaculture (as farmed fish lack the ability to escape those events). The local and systemic response to gill damage, concurrent with several environmental insults, are not well investigated. We performed field sampling to collect gill and liver tissue after several environmental insults. Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged gill tissue. The gill damage-associated biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon gill health.
Project description:a salmonid microarray was used to characterize environmentally-regulated shifts in gene expression between ocean and river habitats in gill and liver tissues of wild migrating adult Pacific sockeye salmon (Oncorhynchus nerka). To correlate gene expression with survival, non-lethal biopsy sampling of gill tissue and microarray-based profiling was combined with biotelemetry and genetic stock identification so that transcriptomic profiles could be compared between fish reaching spawning grounds and presumed mortalities. Fish were captured fish at two marine sampling sites, one within Johnstone Strait (JS), BC. Canada and one within Juan De Fuca Strait (JDFS), BC Canada. Ocean sites were contrasted to fish sampled within the Fraser River at Whonnock (W), BC, Canada. Gill and liver tissues were dissected at each of these sites. Non-lethal biopsy sampling was performed on migrating sockeye salmon intercepted within the Fraser River at Mission, BC, Canada and genetically-based stock ID was used to determine the stock-specific spawning grounds for each fish, giving an intended end-point of migration for each of the stocks investigated in this study.Gene expression levels were determined by comparing the amount of mRNA transcript in the experimental samples relative to a reference sample. A total of 123 microarrays were used to generate the dataset, corresponding to individual hybridizations of both gill and liver samples collected from JS (gill n=14; liver n=15), JDFS (gill n=15; liver n=13), W (gill n=11; liver n=10), and biopsy sampled gill tissue collected at Mission (n=45).Total RNA was amplified (1 round) with MessageAmpTMII-96 kit (Ambion, TX, USA), and reverse transcribed to cDNA before labelling with ALEXA dyes using the Invitrogen Indirect Labelling Kit. The reference contained the combined aRNA of all individuals used in the experiment, excluding bioposy sampled fish. Individual samples were labelled with Alexa 555 and the reference control with Alexa 647, and no dye swaps were perfromed.