Project description:modENCODE_submission_4081 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: Embryo 16-24h; Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; EXPERIMENTAL FACTORS: Developmental Stage Embryo 16-24h; Strain Y cn bw sp; Antibody KW0-CNC (target is cap'n collar)
Project description:modENCODE_submission_4107 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: Embryo 16-24h; Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; EXPERIMENTAL FACTORS: Developmental Stage Embryo 16-24h; Strain Y cn bw sp; Antibody anti-dTCF (target is pangolin)
Project description:modENCODE_submission_4104 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of many of the non-histone chromosomal proteins on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested chromatin-binding protein. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: Y cn bw sp; Developmental Stage: Embryo 16-24h; Genotype: y[1] oc[R3.2]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] lab[R4.2] MstProx[1] GstD5[1] Rh6[1]; EXPERIMENTAL FACTORS: Developmental Stage Embryo 16-24h; Strain Y cn bw sp; Antibody Su(Hw)-PG (target is Su(Hw))
Project description:This study was conducted to explore the serum methylome of precancerous lesions belonging to the serrated pathway of colorectal carcinogenesis in a prospective multicentre cohort. Individuals were grouped into five main categories: (i) serrated adenocarcinoma (SAC), (ii) high-risk serrated polyps (HR-SP) comprising traditional serrated adenomas (TSA), sessile serrated lesions (SSL), and serrated polyps (SP) with dysplasia or ≥ 10 mm; (iii) high-risk hyperplastic polyps (HR-HP), defined as HP ≥ 10 mm; (iv) low-risk serrated lesions (LR-SL) including SP without dysplasia < 10 mm and HP < 10 mm; and (v) healthy individuals with no colorectal findings (NCF). First, epigenome-wide methylation levels were quantified in pooled cfDNA samples to characterize the differential methylation profile between no serrated neoplasia (NSN: NCF and LR-SL) and high-risk serrated lesions (HR-SL: HR-HP and HR-SP); concordance with tissue methylation levels was assessed using external datasets. Then, the pathway-specific cfDNA methylation signature was evaluated together with cfDNA pools from the conventional CRC pathway. cfDNA was extracted from serum samples and methylation measurements were assessed with the Infinium MethylationEPIC BeadChip. Data was mainly preprocessed and analyzed with R/Bioconductor packages.
Project description:Transcriptomics study which main goal is to elucidate the programme of gene expression triggered by water stress in leaflets of the drought-tolerant wild-related tomato Solanum pennellii (acc. PE47) compared with domesticated tomato (S. lycopersicum, cv. P73). In this study we used S. lycopersicum (Sl) (cv. P73) and S. pennellii (Sp) (acc. PE47) species displaying remarkable divergences regarding drought tolerance, to investigate the physiological and molecular responses in leaves of plants grown without stress (control) and after four days of water withholding (water stress, WS), when plant water loss was significant but leaves did not show visual dehydration symptoms yet. Significant physiological differences between species were found, showing Sp leaves higher ability to avoid water loss. Leaf transcriptomic analysis showed important constitutive expression differences between Sp and Sl, including genes with unknown function. In relation to the genes specifically induced by drought in Sp, those linked to stomatal closure, cell wall and primary carbohydrate metabolism and, specially, nitrogen metabolism were identified. Thus, genes linked to NH4+ assimilation, GOGAT/GS cycle and the GDH- and GABA-shunt were specifically induced by water stress in leaves of Sp. Our results showed also the up-regulation in Sp of genes involved in JA biosynthesis pathway, which were induced in both conditions, whereas genes involved in ET biosynthesis were specifically induced under WS. Regarding ET signaling, ERF genes were up-regulated by WS in Sp, hinting at the importance of these transcriptional regulators in the drought response of Sp.