Project description:To test the hypothesis that circRNAs might encode functional peptides in mammalian cells, we studied the long intergenic non-protein coding RNA, p53 induced transcript (LINC-PINT), which was previously reported as a tumor suppressor and connected p53 activation with polycomb repressive complex 2 (PRC2). We selected this long noncoding RNA (lncRNA) for further analysis because LINC-PINT has a long exon 2 which in accordance with the bioinformatical analyzed circular RNA standard.The following immunoblotting showed 87aa peptide level also decreased, indicating that this peptide is encoded by circPINTexon2. We name this circRNA encoded peptide PINT87aa.
Project description:To test the hypothesis that circRNAs might encode functional peptides in mammalian cells, we studied the long intergenic non-protein coding RNA, p53 induced transcript (LINC-PINT), which was previously reported as a tumor suppressor and connected p53 activation with polycomb repressive complex 2 (PRC2). We selected this long noncoding RNA (lncRNA) for further analysis because LINC-PINT has a long exon 2 which in accordance with the bioinformatical analyzed circular RNA standard.The following immunoblotting showed 87aa peptide level also decreased, indicating that this peptide is encoded by circPINTexon2. We name this circRNA encoded peptide PINT87aa. To investigate the possible regulatory role of PINT87aa, we did the expression micro array in PINT87aa stably transfect U251 or U87 glioblastoma cells and their control cells. The array analysis reveals that PINT87aa may involve in the cell cycle regulation, anti-apoptosis effects and multiple oncogenic signaling pathway activation.
Project description:It has been recently shown that the transcription factor p53 induces the expression of multiple lincRNAs. However, relatively little is known about the role that lincRNAs play in this pathway. Here we characterize a lincRNA named PINT (p53 Induced Noncoding Transcript). We show that PINT is a ubiquitously expressed lincRNA that is finely regulated by p53. In mouse cells, PINT promotes cell proliferation and survival by regulating the expression of genes of TGF-beta, MAPK and p53 pathways. PINT is a nuclear lincRNA that directly interacts with Polycomb Repressive Complex 2 (PRC2), being required for PRC2 targeting of specific genes for repression. Furthermore, PINT functional activity is dependent on PRC2 expression, representing a connection between the p53 pathway and epigenetic regulation by PRC2. We have also identified PINT human ortholog (hPINT), which presents suggestive analogies with the mouse lincRNA. hPINT is similarly regulated by p53, and its expression correlates significantly with the same cellular pathways as the mouse ortholog, including the p53 pathway. Interestingly, hPINT is significantly downregulated in colon cancer, representing a novel tumor suppressor candidate. Our results not only help our understanding of the role of p53 and lincRNAs in cancer, but also contribute to the open debate regarding the utility of mouse models for the study of lincRNAs. Normal tissue located at least 20 cm away from a tumor was obtained through surgical resection from patients of colorectal cancer. Total RNA was extracted and subjected to microarray analysis.
Project description:It has been recently shown that the transcription factor p53 induces the expression of multiple lincRNAs. However, relatively little is known about the role that lincRNAs play in this pathway. Here we characterize a lincRNA named PINT (p53 Induced Noncoding Transcript). We show that PINT is a ubiquitously expressed lincRNA that is finely regulated by p53. In mouse cells, PINT promotes cell proliferation and survival by regulating the expression of genes of TGF-beta, MAPK and p53 pathways. PINT is a nuclear lincRNA that directly interacts with Polycomb Repressive Complex 2 (PRC2), being required for PRC2 targeting of specific genes for repression. Furthermore, PINT functional activity is dependent on PRC2 expression, representing a connection between the p53 pathway and epigenetic regulation by PRC2. We have also identified PINT human ortholog (hPINT), which presents suggestive analogies with the mouse lincRNA. hPINT is similarly regulated by p53, and its expression correlates significantly with the same cellular pathways as the mouse ortholog, including the p53 pathway. Interestingly, hPINT is significantly downregulated in colon cancer, representing a novel tumor suppressor candidate. Our results not only help our understanding of the role of p53 and lincRNAs in cancer, but also contribute to the open debate regarding the utility of mouse models for the study of lincRNAs. Inhibition of PINT or p53 gene expression and subsequent treatment with 150 nM doxorubicine for 12h in MEF LSL p53 +/+ cells.
Project description:Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor among adults, which is characterized by high invasion, migration and proliferation abilities. One important process that contributes to the invasiveness of GBM is the epithelial to mesenchymal transition (EMT). EMT is regulated by a set of defined transcription factors which tightly regulate this process, among them is the basic helix-loop-helix family member, TWIST1. Here we show that TWIST1 is methylated on lysine-33 at chromatin by SETD6, a methyltransferase with expression levels correlating with poor survival in GBM patients. RNA-seq analysis in U251 GBM cells suggested that both SETD6 and TWIST1 regulate cell adhesion and migration processes. We further show that TWIST1 methylation attenuates the expression of the long-non-coding RNA, LINC-PINT, thereby suppressing EMT in GBM. Mechanistically, TWIST1 methylation represses the transcription of LINC-PINT by increasing the occupancy of EZH2 and the catalysis of the repressive H3K27me3 mark at the LINC-PINT locus. Under un-methylated conditions, TWIST1 dissociates from the LINC-PINT locus, allowing the expression of LINC-PINT which leads to increased cell adhesion and decreased cell migration. Together, our findings unravel a new mechanistic dimension for selective expression of LINC-PINT mediated by TWIST1 methylation.
Project description:It has been recently shown that the transcription factor p53 induces the expression of multiple lincRNAs. However, relatively little is known about the role that lincRNAs play in this pathway. Here we characterize a lincRNA named PINT (p53 Induced Noncoding Transcript). We show that PINT is a ubiquitously expressed lincRNA that is finely regulated by p53. In mouse cells, PINT promotes cell proliferation and survival by regulating the expression of genes of TGF-beta, MAPK and p53 pathways. PINT is a nuclear lincRNA that directly interacts with Polycomb Repressive Complex 2 (PRC2), being required for PRC2 targeting of specific genes for repression. Furthermore, PINT functional activity is dependent on PRC2 expression, representing a connection between the p53 pathway and epigenetic regulation by PRC2. We have also identified PINT human ortholog (hPINT), which presents suggestive analogies with the mouse lincRNA. hPINT is similarly regulated by p53, and its expression correlates significantly with the same cellular pathways as the mouse ortholog, including the p53 pathway. Interestingly, hPINT is significantly downregulated in colon cancer, representing a novel tumor suppressor candidate. Our results not only help our understanding of the role of p53 and lincRNAs in cancer, but also contribute to the open debate regarding the utility of mouse models for the study of lincRNAs.
Project description:It has been recently shown that the transcription factor p53 induces the expression of multiple lincRNAs. However, relatively little is known about the role that lincRNAs play in this pathway. Here we characterize a lincRNA named PINT (p53 Induced Noncoding Transcript). We show that PINT is a ubiquitously expressed lincRNA that is finely regulated by p53. In mouse cells, PINT promotes cell proliferation and survival by regulating the expression of genes of TGF-beta, MAPK and p53 pathways. PINT is a nuclear lincRNA that directly interacts with Polycomb Repressive Complex 2 (PRC2), being required for PRC2 targeting of specific genes for repression. Furthermore, PINT functional activity is dependent on PRC2 expression, representing a connection between the p53 pathway and epigenetic regulation by PRC2. We have also identified PINT human ortholog (hPINT), which presents suggestive analogies with the mouse lincRNA. hPINT is similarly regulated by p53, and its expression correlates significantly with the same cellular pathways as the mouse ortholog, including the p53 pathway. Interestingly, hPINT is significantly downregulated in colon cancer, representing a novel tumor suppressor candidate. Our results not only help our understanding of the role of p53 and lincRNAs in cancer, but also contribute to the open debate regarding the utility of mouse models for the study of lincRNAs.