Project description:Saccharomyces pastorianus lager brewing yeasts are domesticated hybrids of Saccharomyces cerevisiae and cold-tolerant Saccharomyces eubayanus. To better understand the contribution of both parental genomes to maltose metabolism in brewing wort, this study focuses on maltose transport in the S. eubayanus type strain CBS12357T/FM1318T. To obtain complete sequences of the MAL loci of this strain, a near-complete genome assembly was generated using the Oxford Nanopore Technology MinION sequencing platform. Except for CHRXII, all sixteen chromosomes were assembled as single contigs. Four loci harboring putative maltose transporter genes (SeMALT1-4), located in subtelomeric regions of CHRII, CHRV, CHRXIII and CHRXVI, were completely resolved. The near-identical loci on CHRV and CHRXVI strongly resembled canonical S. cerevisiae MAL loci, while those on CHRII and CHRXIII showed different structures suggestive of gene loss. Functionality of the SeMALT1-4-encoded transporters was confirmed by their ability to restore growth on maltose, but not on maltotriose, of a maltose-transport-deficient S. cerevisiae strain. Simultaneous CRISPR-Cas9-assisted deletion of SeMALT2 and SeMALT4, which shared 99.7 % sequence identity, eliminated growth of S. eubayanus CBS12357T on maltose. Transcriptome analysis of S. eubayanus CBS12357T established that, in maltose-grown cultures, SeMALT2 and SeMALT4 were expressed at much higher levels than SeMALT1 and SeMALT3, thus resolving the apparent discrepancy between heterologous expression and deletion studies. These results represent a first genomic and physiological characterization of maltose transport in S. eubayanus CBS12357T and provides a valuable resource for further industrial exploitation of this yeast.
Project description:S. pastorianus strains are hybrids of S. cerevisiae and S. eubayanus that have been domesticated for several centuries in lager-beer brewing environments. As sequences and structures of S. pastorianus genomes are being resolved, molecular mechanisms and evolutionary origin of several industrially relevant phenotypes remain unknown. This study investigates how maltotriose metabolism, a key feature in brewing, may have arisen in early S. eubayanus x S. cerevisiae hybrids. To address this question, we generated a near-complete genome assembly of Himalayan S. eubayanus strains of the Holarctic subclade. This group of strains have been proposed to be the origin of the S. eubayanus subgenome of current S. pastorianus strains. The Himalayan S. eubayanus genomes harbored several copies of an SeAGT1 -oligoglucoside transporter gene with high sequence identity to genes encountered in S. pastorianus. Although Himalayan S. eubayanus strains are unable to grown on maltose and maltotriose, their maltose-hydrolase and SeMALT1 and SeAGT1 maltose-transporter genes complemented the corresponding null mutants of S. cerevisiae. Expression, in a Himalayan S. eubayanus strain, of a functional S. cerevisiae maltose-metabolism regulator gene (MALx3) enabled growth on oligoglucosides. The hypothesis that the maltotriose-positive phenotype in S. pastorianus is a result of heterosis was experimentally tested by constructing a S. cerevisiae x S. eubayanus laboratory hybrid with a complement of maltose-metabolism genes that resembles that of current S. pastorianus strains. The ability of this hybrid to consume maltotriose in brewer's wort demonstrated regulatory cross talk between sub-genomes and thereby validated this hypothesis. These results provide experimental evidence of the evolutionary origin of an essential phenotype of lager-brewing strains and valuable knowledge for industrial exploitation of laboratory-made S. pastorianus-like hybrids.