Project description:Pistil development is an important developmental process that directly affects the yield of Prunus sibirica. Through transcriptome sequencing analysis of clones with abortive pistil (No. 595) and normal pistil (No. 28) of Prunus sibirica, a total of 1950 significantly differentially expressed genes were obtained, among which 1000 genes were up-regulated and 950 genes were down-regulated. The results provide a theoretical basis for further investigation of the formation mechanism of pistil abortion.
Project description:Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. We used a surgical procedure to obtain large quantities of uncontaminated pollen tubes that grew through the pistil and defined their transcriptome by microarray analysis. We also characterized the transcriptome of in vitro-grown pollen tubes (for 0.5hours or 4hours) and dessicated mature pollen in Arabidopsis.
Project description:Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. We used a surgical procedure to obtain large quantities of uncontaminated pollen tubes that grew through the pistil and defined their transcriptome by microarray analysis. We also characterized the transcriptome of in vitro-grown pollen tubes (for 0.5hours or 4hours) and dessicated mature pollen in Arabidopsis. Experiment Overall Design: Pollen and pollen tubes were collected as described in the protocols section for RNA extraction and hybridization on Affymetrix ATH1 Genechip microarrays.
Project description:To learn more about the role of FRUITFULL (FUL), in pistil/silique development, we performed a ChIP-seq experiment to identify direct targets of FUL in the pistil/silique.
Project description:The pistillody mutant wheat (Triticum aestivum L.) plant HTS-1 exhibits homeotic transformation of stamens into pistils or pistil-like structures. Unlike common wheat varieties, HTS-1 produces three to six pistils per floret, potentially increasing the yield. Thus, HTS-1 is highly valuable in the study of floral development in wheat. In this study, we conducted RNA sequencing of the transcriptomes of the pistillody stamen (PS) and the pistil (P) from HTS-1 plants, and the stamen (S) from the non-pistillody control variety Chinese Spring TP to gain insights into pistil and stamen development in wheat.
Project description:The TCP4 transcription factor plays an important role in plant growth and development, especially in flower development. PmTCP4 is involved in the process of pistil abortion in Japanese apricot, but its molecular mechanism, particularly the DNA binding sites and co-regulatory genes, are quite unknown. Therefore, to identify the genome-wide binding sites of PmTCP4 transcription factors and their co-regulatory genes, chromatin immunoprecipitation sequencing (ChIPSeq) was carried out. ChIP-Seq data produced the maximum enriched peaks in two Japanese apricot cultivars ‘Daqiandi’ (DQD) and ‘Longyan’ (LY), which showed that the majority ofDNA-protein interactions are relevant and have a significant function in binding sites. Moreover, 720 and 251 peak-associated genes regulated by PmTCP4 were identified in DQD and LY, respectively, and most of them were involved in the flower and pistil development process. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that photosynthesis and oxidative phosphorylation were the most enriched pathways in both cultivars and all identified genes related to these pathways were down-regulated. This study will provide a reference for a better understanding of the PmTCP4 regulatory mechanism during pistil abortion in Japanese apricot.
Project description:Compared to what is known in model species, reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. We performed microarray analysis for the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.). The analysis was performed comparing the transcriptome of laser-microdissected stylar canal cells isolated from two clementine genotypes differing for self-incompatibility response (‘Comune’, self-incompatible; and ‘Monreal’, a self compatible mutation of ‘Comune’).
Project description:Pistil development is a complicated process in plants, and female sterile mutant is an ideal material for screening and cloning the pistil development-related genes. In our previous study, a female sterile mutant fsm (namely fsm1 here) was obtained from a Chinese cabbage DH line ‘FT’ using a combination of isolated microspore culture and ethyl methanesulfonate (EMS) mutagenesis. BraA04g009730.3C was predicted as the candidate gene for mutant fsm1. BraA04g009730.3C encoded STERILE APETALA (SAP), a transcriptional regulator, which played a role in regulating floral organ development. In this study, another female sterile mutant (namely fsm2) was derived from a population combining EMS mutagenesis and germinating seeds of ‘FT’. The phenotype of mutant fsm2 was consistent with that of fsm1, exhibiting pistil abortion, and smaller floral organs. Genetic analysis indicated that the phenotype of mutant fsm2 was controlled by a single recessive nuclear gene. Allelism testing showed that the mutant genes of fsm1 and fsm2 were allelic, named as Brfsm. A single-nucleotide mutation (G-to-A) in the first exon of BraA04g009730.3C caused a missense mutation from GAA (glutamic acid) to GGA (glycine) in mutant fsm2. Comparative transcriptome analysis on the pistils of wild-type ‘FT’ and mutant fsm1 revealed that a total of 3,855 differentially expressed genes (DEGs) were obtained, among which 29 genes related to ovule development and 16 genes related to organ size were identified. Based on the validation of qRT-PCR, we proposed the possible regulatory pathways whereby SAP may mediate pistil development in the fsm mutant. The mutation of BraA04g009730.3C in fsm plants was involved in the pistil abortion and smaller floral organ in Chinese cabbage. These results lay a solid foundation for elucidating the molecular mechanism of pistil development in Chinese cabbage.
Project description:Flower development is a key stage in the life cycle of fruit trees and its proper development is considered its reproductive success. Pistil abortion is a widely distributed phenomenon in fruit plants and its mechanism in Japanese apricot is quite unclear. The present study was carried out to get a deep insight about the regulatory mechanism of pistil abortion in Japanese apricot using transcriptomic approach. A large number of DEGs (24,683) were identified in normal (N) and abortive pistil stages i.e. style browning (STYB), stigma browning (STIB) and ovary browning (OVB). Pair-wise comparison analysis was performed as N vs STYB, N vs STIB, N vs OVB and STIB vs OVB, and produced 9592, 8691, 8660 and 8103 transcripts, respectively. The Gene Ontology (GO) showed that different metabolic processes, plant hormones, flower development and photosystem related genes were involved in pistil abortion. The pathway analysis revealed that plant hormones signal transduction and circadian rhythm pathways were found significantly enriched. Furthermore, transcription factors such as MYB, MADS-box and NAC family remained highly expressed. Maximum number of the genes were grouped to cluster 11, and were highly expressed at OVB stage, suggesting that this stage might be critical for pistil abortion. This study provides an alternatives to be consider for further studies and understanding of pistil abortion processes in Japanese apricot, and provide a reference related to this issue for other deciduous fruit crops.