Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp).
Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp). 15 samples examined in total from important plume zones of the aquifer sampled in Feb. 2006, Sep. 2008 and Jun. 2009 (5 every year of sampling).
Project description:Data on the 16S rRNA gene amplicon sequences from Pteris vittata rhizosphere soils are reported. The following phyla were recorded in arsenic-rich soils: Actinobacteria (59%), Proteobacteria (26%), Chloroflexi (17%), and Acidobacteria (9%). Actinobacteria (45%), Proteobacteria (22%), Chloroflexi (10%), and Acidobacteria (11%) were in natural-mineral soils.
Project description:Insights into plant endosphere bacterial diversity and exploration of their bioincentives in the formulation of biofertilizers promise to avert ecological disturbances. Here, we presented the sequence dataset of the endophytic bacterial community from the roots and stems of sunflower obtained from farmlands in Itsoseng and Lichtenburg, North West Province of South Africa, using 16S rRNA gene amplicon sequencing. The climatic conditions of this region are characterized by an annual rainfall of about 600 mm and a temperature range of 3 to 21°C during winter and 22 to 34°C during summer. The genomic DNA was obtained from 1 g of each macerated sample using commercial DNA kits (DNeasy® Plant Mini kit, Qiagen, USA). The DNA was amplified through polymerase chain reaction at the V4 region using the specific forward and reverse primers. Amplicon sequencing was performed on the Miseq Illumina platform. Sequence read processing was performed using QIIME 1 16S-based pipeline implemented on Nephele microbial bioinformatics platform using default parameters. The sequence has been deposited in the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) with assigned Bioproject accession numbers. The data reveals the endophytic bacterial community structure and functions in sunflower cultivated in organic and nonorganic soils at growing and flowering stages.
Project description:Bacterial rhizospheric microbiomes of Musa acuminata cultivated in farms close to the west and east Mexican coasts and with different climate, soils, and crop management practices were characterized by 16S rRNA gene amplicon sequencing. Results showed that rhizospheric microbiome composition changed along with seasonal weather but were mostly indifferent to soil type.