Project description:SmallRNAs are proposed as key regulators in many cellular processes including angiogenesis, suggested candidates for future therapeutic applications. But, regulation and modulation of smallRNAs in pathology conditions and normal conditions are poorly recognized, supremely in wound care management. Current study focused to identify the smallRNA regulatory network in simulated microgravity sensitized Human Umbilical Cord Vein Endothelial cells (HUVECs) and gravity (1g) as a background. HUVECs were purchased from Lonza (Cat.No) and cultured in EGM2 medium (Cat.No CC3162) supplemented with 10% Fetal Bovine, 1% penicillin-streptomycin (W/V). Cells were cultured in RPM (Randomized positioned machine) for 2 hours at 37°C.
Project description:To reveal the potential mechanisms involved in the dysfunction of antiviral immune responses under simulated microgravity conditions, we investigated the transcriptional changes related to the status of innate immune responses by RNA-seq with poly I:C or mock PBS treatment under Normal gravity or simulated microgravity conditions. Our results indicate that the retinoic acid inducible gene (RIG)-I-like receptor (RLR) and Toll-like receptor (TLR) signal pathways, which are both involved in the type-I interferon induction, are significantly inhibited by simulated microgravity effects.
Project description:The below table includes a smaller list of data that was analyzed by dChip and filtered by pvalue such that a file with about 4600 genes was obtained, which allowed for ease of use from 40,000 genes. Keywords: static vs simulated microgravity
Project description:Regenerative life support systems for space crews recycle organic and inorganic waste into water, food and oxygen using different organisms. For instance, the European Space Agency's MELiSSA uses Limnospira indica PCC8005 for air revitalisation and food production. Before use in space, the components' compatibility with reduced gravity must be tested. This innovative study introduces a novel ground analog designed specifically for microgravity experiments involving cyanobacteria, employing a cutting-edge random positioning machine (RPM). Limnospira indica PCC8005 was shown to grow slower under simulated microgravity and whole proteome analysis revealed a downregulation of e.g. ribosomal proteins, glutamine synthase and nitrate uptake transporters while an upregulation was found for gas vesicle proteins, carboxysome proteins and phycobiliproteins. All together our results suggested that L. indica experienced carbon limitation when cultivated in simulated microgravity conditions.
Project description:Transcriptional profiling of human peripheral blood lymphocyte comparing simulated microgravity for 72 hours with untreated control.
Project description:Cellular and molecular dynamics of human cells are constantly affected by gravity. Alteration of the gravitational force disturbs the cellular equilibrium, which might modify physiological and molecular characteristics. Nevertheless, biological responses of cancer cells to reduced gravitational force remains obscure. Here, we aimed to comprehend not only transcriptomic patterns but drug responses of colorectal cancer (CRC) under simulated microgravity. We established four organoids directly from CRC patients, and organoids cultured in 3D clinostat were subjected to genome wide expression profiling and drug library screening. Our observations revealed changes in cell morphology and an increase in cell viability under simulated microgravity compared to their static controls. Transcriptomic analysis highlighted a significant dysregulation in the TBC1D3 family of genes. The upregulation of cell proliferation observed under simulated microgravity conditions was further supported by enriched cell cycle processes, as evidenced by the functional clustering of mRNA expressions using cancer hallmark and gene ontology terms. Our drug screening results indicated an enhanced response rate to 5-FU under conditions of simulated microgravity, suggesting potential implications for cancer treatment strategies in simulated microgravity.
Project description:Astronauts have been previously shown to exhibit decreased salivary lysozyme and increased dental calculus and gingival inflammation in response to space flight, host factors that could contribute to oral diseases such as caries and periodontitis. However, the specific physiological response of caries-causing bacteria such as Streptococcus mutans to space flight and/or ground-based simulated microgravity has not been extensively investigated. In this study, High Aspect Ratio Vessel (HARV) S. mutans simulated microgravity and normal gravity cultures were assessed for changes in metabolite and transcriptome profiles, H2O2 resistance, and competence in sucrose-containing biofilm media. Stationary phase S. mutans simulated microgravity cultures displayed increased killing by H2O2 compared to normal gravity control cultures, but competence was not affected. RNA-seq analysis revealed that expression of 153 genes was up-regulated ≥ 2-fold and 94 genes down-regulated ≥ 2-fold during simulated microgravity HARV growth. These included a number of genes located on extrachromosomal elements, as well as genes involved in carbohydrate metabolism, translation, and stress responses. Collectively, these results suggest that growth under microgravity analog conditions promotes changes in S. mutans gene expression and physiology that may translate to an altered cariogenic potential of this organism during space flight missions.
Project description:In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the astronaut’s health. To gain insight into the role of miRNAs and lncRNAs in response to radiation and microgravity, we analyzed RNA expression profiles in human lymphoblastoid TK6 cells incubated for 24 h in static condition or in rotating condition to stimulate microgravity in space after 2 Gy γ-ray irradiation. Expression of 14 lncRNAs and 17 mRNAs was found to be significantly down-regulated in the simulated microgravity condition. In contrast, irradiation up-regulated the expression of 55 lncRNAs and 56 mRNAs, while only one lncRNA, but no mRNA, was down-regulated. Furthermore, 2 miRNAs, 70 lncRNAs, and 87 mRNAs showed significantly altered expression under simulated microgravity after irradiation, and these changes were independently induced by irradiation and simulated microgravity. Together, our results indicate that simulated microgravity and irradiation additively and independently alter the expression of RNAs and their target genes in human lymphoblastoid cells.
Project description:Microgravity is an ecological factor that affect the environment of the body. In this study, quantitative isobaric labeling (tandem mass tag) methods were used to study the changes in human gastric mucosal cells under simulated microgravity.