Project description:Waddlia chondrophila, a Chlamydia-like bacterium, has been previously associated with adverse pregnancy outcomes. Analogously to Chlamydia trachomatis, W. chondrophila also negatively impacts human semen and may be a source of impaired male fertility. In this study, we analyzed W. chondrophila seroprevalence in a population of male patients of infertile couples and the impact of past exposition to this bacterium on semen parameters. Our results show a surprisingly high seroprevalence of W. chondrophila, which contrasts with a previous study focusing on a population of healthy men. Nevertheless, we did not observe any significant association between positive serology and abnormal sperm parameters. This may suggest that a negative impact on semen is observed only during an ongoing infection. Alternatively, W. chondrophila may have an immune impact on male fertility, as previously postulated for women with adverse pregnancy outcomes.
Project description:Evidence is growing for a role of Waddlia chondrophila as an agent of adverse pregnancy outcomes in both humans and ruminants. This emerging pathogen, member of the order Chlamydiales, is also implicated in bronchiolitis and lower respiratory tract infections. Until now, the serological diagnosis of W. chondrophila infection has mainly relied on manually intensive tests including micro-immunofluorescence and Western blotting. Thus, there is an urgent need to establish reliable high throughput serological assays. Using a combined genomic and proteomic approach, we detected 57 immunogenic proteins of W. chondrophila, of which 17 were analysed by mass spectrometry. Two novel hypothetical proteins, Wim3 and Wim4, were expressed as recombinant proteins in Escherichia coli, purified and used as antigens in an ELISA test. Both proteins were recognized by sera of rabbits immunized with W. chondrophila as well as by human W. chondrophila positive sera but not by rabbit pre-immune sera nor human W. chondrophila negative sera. These results demonstrated that the approach chosen is suitable to identify immunogenic proteins that can be used to develop a serological test. This latter will be a valuable tool to further clarify the pathogenic potential of W. chondrophila.
Project description:Transcriptional regulation in Chlamydiae is still poorly understood. The absence until recently of genetic tools is the main cause of this gap. We discovered three new potential DNA-associated proteins of Waddlia chondrophila, a Chlamydia-related bacterium, using heparin chromatography coupled to mass spectrometry (Wcw_0377, Wcw_1456, and Wcw_1460). By ChIP-seq analysis, we determined the regulatory landscape of these three proteins and we showed that Wcw_0377 binds all along the genome whereas Wcw_1456 and _1460 possess a wide regulon with a large number of co-regulated genes. Wcw_1456 and Wcw_1460 interact with RpoD (σ66), emerging as potential RpoD regulators. On the other hand, Wcw_0377 is able to reach the host nucleus, where it might interact with eukaryotic histones through its putative chromatin-remodelling SWIB/MDM2 domain.
Project description:Chronic infections caused by obligate intracellular bacteria belonging to the Chlamydiales order are related to the formation of persistent developmental forms called aberrant bodies (ABs), which undergo DNA replication without cell division. These enlarged bacteria develop and persist upon exposure to different stressful conditions such as β-lactam antibiotics, iron deprivation and interferon-γ. However, the mechanisms behind ABs biogenesis remain uncharted. Using an RNA-sequencing approach, we compared the transcriptional profile of ABs induced by iron starvation to untreated bacteria in the Chlamydia-related species Waddliachondrophila, a potential agent of abortion in ruminants and miscarriage in humans. Consistent with the growth arrest observed following iron depletion, our results indicate a significant reduction in the expression of genes related to energy production, carbohydrate and amino acid metabolism and cell wall/envelope biogenesis, compared to untreated, actively replicating bacteria. Conversely, three putative toxin-antitoxin modules were among the most up-regulated genes upon iron starvation, suggesting that their activation might be involved in growth arrest in adverse conditions, an uncommon feature in obligate intracellular bacteria. Our work represents the first complete transcriptomic profile of a Chlamydia-related species in stressful conditions and sets the grounds for further investigations on the mechanisms underlying chlamydial persistence.
Project description:Waddlia chondrophila and Chlamydia trachomatis are intracellular bacteria associated with human miscarriage. We investigated their role in human preterm birth. Whereas presence of Chlamydia trachomatis DNA in genital tract was associated with human preterm birth, Waddlia was not, despite being present in women's genital tracts.
Project description:Waddlia chondrophila is a Gram-negative intracellular bacterial organism that is related to classical chlamydial species and has been implicated as a cause of abortion in cattle. Despite an increasing number of observational studies linking W. chondrophila infection to cattle abortion, little direct experimental evidence exists. Given this paucity of direct evidence the current study was carried out to investigate whether experimental challenge of pregnant cattle with W. chondrophila would result in infection and abortion. Nine pregnant Friesian-Holstein heifers received 2?×?108 inclusion forming units (IFU) W. chondrophila intravenously on day 105-110 of pregnancy, while four negative-control animals underwent mock challenge. Only one of the challenged animals showed pathogen-associated lesions, with the organism being detected in the diseased placenta. Importantly, the organism was re-isolated and its identity confirmed by whole genome sequencing, confirming Koch's third and fourth postulates. However, while infection of the placenta was observed, the experimental challenge in this study did not confirm the abortifacient potential of the organism.