Project description:In a prior report, we observed two distinct lung microbiomes in healthy subjects that we termed â??pneumotypesâ??: pneumotypeSPT, characterized by high bacterial load and supraglottic predominant taxa (SPT) such as the anaerobes Prevotella and Veillonella; and pneumotypeBPT, with low bacterial burden and background predominant taxa (BPT) found in the saline lavage and bronchoscope. Here, we determined the prevalence of these two contrasting lung microbiome types, in a multi-center study of healthy subjects. We confirmed that a lower airway microbiome enriched with upper airway microbes (pneumotypeSPT) was present in ~45% of healthy individuals. Cross-sectional Multicenter cohort. BAL of 49 healthy subjects from three cohort had their lower airway microbiome assessed by 16S rDNA sequencing and microbial gene content (metagenome) was computationally inferred from taxonomic assignments. The amplicons from total 100 samples are barcoded; the barcode and other clinical characteristics (e.g. inflammatory biomarkers and metabolome data) for each sample are provided in the 'Pneumotype.sep.Map.A1.txt' file.
Project description:Histone 3 Lysine 9 (H3K9) methylation is known to be associated with pericentric heterochromatin and important in genomic stability. In this study, we show that trimethylation at H3K9 (H3K9me3) is enriched in an adult neural stem cell niche- the subventricular zone (SVZ) on the walls of the lateral ventricle in both rodent and non-human primate baboon brain. Previous studies have shown that there is significant correlation between baboon and human regarding genomic similarity and brain structure, suggesting that findings in baboon are relevant to human. To understand the function of H3K9me3 in this adult neurogenic niche, we performed genome-wide analyses using ChIP-Seq (chromatin immunoprecipitation and deep-sequencing) and RNA-Seq for in vivo SVZ cells purified from baboon brain. Through integrated analyses of ChIP-Seq and RNA-Seq, we found that H3K9me3-enriched genes associated with cellular maintenance, post-transcriptional and translational modifications, signaling pathways, and DNA replication are expressed, while genes involved in axon/neuron, hepatic stellate cell, or immune-response activation are not expressed. As neurogenesis progresses in the adult SVZ, cell fate restriction is essential to direct proper lineage commitment. Our findings highlight that H3K9me3 repression in undifferentiated SVZ cells is engaged in the maintenance of cell type integrity, implicating a role for H3K9me3 as an epigenetic mechanism to control cell fate transition within this adult germinal niche. SVZ H3K9me3 ChIP-seq profile of an adult baboon subventricular zone was generated by deep sequencing with Illumina HiSeq2000
Project description:Sub-Saharan Africa represents 69% of the total number of individuals living with HIV infection worldwide and 72% of AIDS deaths globally. Pulmonary infection is a common and frequently fatal complication, though little is known regarding the lower airway microbiome composition of this population. Our objectives were to characterize the lower airway microbiome of Ugandan HIV-infected patients with pneumonia, to determine relationships with demographic, clinical, immunological, and microbiological variables and to compare the composition and predicted metagenome of these communities to a comparable cohort of patients in the US (San Francisco). Bronchoalveolar lavage samples from a cohort of 60 Ugandan HIV-infected patients with acute pneumonia were collected. Amplified 16S ribosomal RNA was profiled and aforementioned relationships examined. Ugandan airway microbiome composition and predicted metagenomic function were compared to US HIV-infected pneumonia patients. Among the most common bacterial pulmonary pathogens, Pseudomonas aeruginosa was most prevalent in the Ugandan cohort. Patients with a richer and more diverse airway microbiome exhibited lower bacterial burden, enrichment of members of the Lachnospiraceae and sulfur-reducing bacteria and reduced expression of TNF-alpha and matrix metalloproteinase-9. Compared to San Franciscan patients, Ugandan airway microbiome were significantly richer, and compositionally distinct with predicted metagenomes that encoded a multitude of distinct pathogenic pathways e.g secretion systems. Ugandan pneumonia-associated airway microbiome is compositionally and functionally distinct from those detected in comparable patients in developed countries, a feature which may contribute to adverse outcomes in this population. Please note that the data from the comparable cohort of patients in the USUS data was published as supplemental material of PMID: 22760045 but not submitted to GEO The 'patient_info.txt' contains 12 clinical, 7 immunological and 3 microbiological variables for each patient. The G2 PhyloChip microarray platform (commercially available from Second Genome, Inc.) was used to profile bacteria in lower airway samples from 60 subjects
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Histone 3 Lysine 9 (H3K9) methylation is known to be associated with pericentric heterochromatin and important in genomic stability. In this study, we show that trimethylation at H3K9 (H3K9me3) is enriched in an adult neural stem cell niche- the subventricular zone (SVZ) on the walls of the lateral ventricle in both rodent and non-human primate baboon brain. Previous studies have shown that there is significant correlation between baboon and human regarding genomic similarity and brain structure, suggesting that findings in baboon are relevant to human. To understand the function of H3K9me3 in this adult neurogenic niche, we performed genome-wide analyses using ChIP-Seq (chromatin immunoprecipitation and deep-sequencing) and RNA-Seq for in vivo SVZ cells purified from baboon brain. Through integrated analyses of ChIP-Seq and RNA-Seq, we found that H3K9me3-enriched genes associated with cellular maintenance, post-transcriptional and translational modifications, signaling pathways, and DNA replication are expressed, while genes involved in axon/neuron, hepatic stellate cell, or immune-response activation are not expressed. As neurogenesis progresses in the adult SVZ, cell fate restriction is essential to direct proper lineage commitment. Our findings highlight that H3K9me3 repression in undifferentiated SVZ cells is engaged in the maintenance of cell type integrity, implicating a role for H3K9me3 as an epigenetic mechanism to control cell fate transition within this adult germinal niche.
Project description:To investigate the extent of similarity in epigenetic programming among human, baboon and mouse PSCs, we examined genome-wide patterns of four chromatin modifications (H3K4me3, H3K9me3, H3K27me3, H3K27ac) and DNA methylation in baboon iPSC and ESCs. We show that baboon pluripotent cells (PSCs) recapitulate key molecular features of human PSCs with much greater accuracy than that found in PSCs from non-primate species. Specifically, baboon and human PSCs exhibit significantly greater conservation of gene expression patterns, higher sequence and structural homology among pluripotency factors, more equivalent genome-wide patterns of histone and DNA methylation modifications, and similar maintenance of bivalent programming of developmental genes than that found between human and non-primate PSCs.
Project description:To investigate the extent of similarity in epigenetic programming among human, baboon and mouse PSCs, we examined genome-wide patterns of four chromatin modifications (H3K4me3, H3K9me3, H3K27me3, H3K27ac) and DNA methylation in baboon iPSC and ESCs. We show that baboon pluripotent cells (PSCs) recapitulate key molecular features of human PSCs with much greater accuracy than that found in PSCs from non-primate species. Specifically, baboon and human PSCs exhibit significantly greater conservation of gene expression patterns, higher sequence and structural homology among pluripotency factors, more equivalent genome-wide patterns of histone and DNA methylation modifications, and similar maintenance of bivalent programming of developmental genes than that found between human and non-primate PSCs.
Project description:To investigate the extent of similarity in epigenetic programming among human, baboon and mouse PSCs, we examined genome-wide patterns of four chromatin modifications (H3K4me3, H3K9me3, H3K27me3, H3K27ac) and DNA methylation in baboon iPSC and ESCs. We show that baboon pluripotent cells (PSCs) recapitulate key molecular features of human PSCs with much greater accuracy than that found in PSCs from non-primate species. Specifically, baboon and human PSCs exhibit significantly greater conservation of gene expression patterns, higher sequence and structural homology among pluripotency factors, more equivalent genome-wide patterns of histone and DNA methylation modifications, and similar maintenance of bivalent programming of developmental genes than that found between human and non-primate PSCs.
Project description:Histone 3 lysine 4 trimethylation (H3K4me3) is known to be associated with transcriptionally active or poised genes and required for postnatal neurogenesis within the subventricular zone (SVZ) in the rodent model. Previous comparisons have shown significant correlation between baboon (Papio anubis) and human brain. In this study, we demonstrate that chromatin activation mark H3K4me3 is present in undifferentiated progenitor cells within the SVZ of adult baboon brain. To identify the targets and regulatory role of H3K4me3 within the baboon SVZ, we developed a technique to purify undifferentiated SVZ cells while preserving the endogenous nature without introducing culture artifact to maintain the in vivo chromatin state for genome-wide studies (ChIP-Seq and RNA-Seq). We identified that H3K4me3 is significantly enriched for genes involved in cell cycle, cell signaling, nervous system development, metabolism, and ribosomal biogenesis. Among these genes, RNA-Seq identified that genes associated with cellular signaling/maintenance, DNA replication, metabolism, and protein synthesis are expressed. We found that 72% of H3K4me3-enriched genes in undifferentiated SVZ cells are expressed (1913 genes are detectable by RNA-Seq; 2663 genes enriched with H3K4me3 by ChIP-Seq). On the other hand, 750 out of total 2663 H3K4me3-enriched genes are not detectable by RNA-Seq, suggesting 28% of genes in SVZ are poised for activation. RNA-seq profiles were generated from adult baboon subventricular zone primary cells by paired-end deep sequencing with an Illumina HiSeq 2000. RNA-Seq Analysis: Total RNA was extracted from purified baboon SVZ cells using TRIzol reagent, and sequencing libraries were generated with the Illumina RNA-Seq library kit. Paired-end RNA-deepSeq (76 base pair; >300 million tag reads; 269,081,636 mapped reads) were aligned to hg19. DESeq was used to normalize raw read counts, and Cufflink reports read counts and estimated FPKM (fragments per kilobase of exon per million fragments mapped; http://cufflinks.cbcb.umd.edu/faq.html#fpkm). Genes with expression values >1 FPKM were considered for subsequent analyses.