Project description:Background: We studied the chromatin accessibility landscsape in wings during butterfly metamorphosis, and investigate which transcription factors might be driving changes in accessibility Methods: We sequencing the Junonia coenia genome, and we studied chromatin accessibility using ATAC seq in multiple stages of wing development in both forewings and hindwings. For sites showing a large change in accessibility, we investigate which motifs are enriched, and correlate this with changes in gene expression of associated transcription factors. We confirm promising candidates with ChIP-seq Results: We find a highly dynamic landscape, with multiple peaks showing a double increase in accessibility throughout development. We show that transcription factor spineless, but not ecdysone receptor, is highly predictive of opening sites Conclusions: This work provides a characterization of the chromatin dynamics of insect wing metamorphosis, identifies novel candidate chromatin remodeling factors in insects, and provides the first genome assembly of the model butterfly Junonia coenia, with gene and cis-regulatory element annotations
Project description:Background: We studied the chromatin accessibility landscsape in wings during butterfly metamorphosis, and investigate which transcription factors might be driving changes in accessibility Methods: We sequencing the Junonia coenia genome, and we studied chromatin accessibility using ATAC seq in multiple stages of wing development in both forewings and hindwings. For sites showing a large change in accessibility, we investigate which motifs are enriched, and correlate this with changes in gene expression of associated transcription factors. We confirm promising candidates with ChIP-seq Results: We find a highly dynamic landscape, with multiple peaks showing a double increase in accessibility throughout development. We show that transcription factor spineless, but not ecdysone receptor, is highly predictive of opening sites Conclusions: This work provides a characterization of the chromatin dynamics of insect wing metamorphosis, identifies novel candidate chromatin remodeling factors in insects, and provides the first genome assembly of the model butterfly Junonia coenia, with gene and cis-regulatory element annotations
Project description:Technology for crosslinking and immunoprecipitation followed by sequencing (CLIP-seq) has identified the transcriptomic targets of hundreds of RNA-binding proteins in cells. To improve the power of existing and future CLIP-seq datasets, we introduce Skipper, an end-to-end workflow that converts unprocessed reads into annotated binding sites using an improved statistical framework. Compared to existing methods, Skipper on average calls 3.1-4.2 times more transcriptomic binding sites and sometimes >10 times more sites, providing deeper insight into post-transcriptional gene regulation. Skipper also calls binding to annotated repetitive elements and identifies bound elements for 99% of enhanced CLIP experiments. We perform nine translation factor enhanced CLIPs and apply Skipper to learn determinants of translation factor occupancy including transcript region, sequence, and subcellular localization. Furthermore, we observe depletion of genetic variation in occupied sites and nominate transcripts subject to selective constraint because of translation factor occupancy. Skipper offers fast, easy, customizable analysis of CLIP-seq data.
Project description:Background: We studied the chromatin accessibility landscsape in wings during butterfly metamorphosis, and investigate which transcription factors might be driving changes in accessibility Methods: We sequencing the Junonia coenia genome, and we studied chromatin accessibility using ATAC seq in multiple stages of wing development in both forewings and hindwings. For sites showing a large change in accessibility, we investigate which motifs are enriched, and correlate this with changes in gene expression of associated transcription factors. We confirm promising candidates with ChIP-seq Results: We find a highly dynamic landscape, with multiple peaks showing a double increase in accessibility throughout development. We show that transcription factor spineless, but not ecdysone receptor, is highly predictive of opening sites Conclusions: This work provides a characterization of the chromatin dynamics of insect wing metamorphosis, identifies novel candidate chromatin remodeling factors in insects, and provides the first genome assembly of the model butterfly Junonia coenia, with gene and cis-regulatory element annotations
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:We sequenced the mRNA of three species of Heliconius butterfly and Eueides isabella in order to identify genes upregulated in the mouthparts tissues. Sequencing libraries were produced for three tissues types (mouthparts, legs and antennae), for one male and one female of each species.