Project description:Subtypes of innate lymphoid cells (ILC), defined by effector function and transcription factor expression, have recently been identified. In the adult, ILC derive from common lymphoid progenitors in bone marrow, although transcriptional regulation of the developmental pathways involved remains poorly defined. TOX is required for development of lymphoid tissue inducer cells, a type of ILC3 required for lymph node organogenesis, and NK cells, a type of ILC1. We show here that production of multiple ILC lineages requires TOX, as a result of TOX-dependent development of common ILC progenitors. Comparative transcriptome analysis demonstrated failure to induce various aspects of the ILC gene program in the absence of TOX, implicating this nuclear factor as a key early determinant of ILC lineage specification. TOX KO vs. wild tyype
Project description:Innate lymphoid cells (ILC) are tissue-resident effector cells with important roles in tissue homeostasis, protective immunity and inflammatory disease. Here we investigated the role of the transcription factor Bcl6 in small intestinal innate lymphoid cells. Specifically, we performed single-cell RNA-seq on total small intestine lamina propria ILCs from tamoxifen-treated Id2-CreERT2 ROSA26-tdRFP Bcl6-fl/fl mice and Id2-CreERT2 ROSA26-tdRFP controls.
Project description:Innate lymphoid cells (ILC) in the small intestine govern immune homeostasis and protect the host against gut pathogens. While distinct cell-intrinsic signals have been identified that determine ILC development and differentiation, it has remained unclear which cell population regulates ILC sustenance. Using unbiased single cell RNA transcriptomic analysis of intestinal fibroblasts, we have identified a specialized Ccl19-expressing fibroblastic reticular cell (FRC) population that underpins solitary intestinal lymphoid tissue (SILT) structures including cryptopatches and isolated lymphoid follicles. Conditional ablation of lymphotoxin-β receptor (LTβR) signalling in SILT FRC impeded the maturation of isolated lymphoid follicles and blocked ILC maintenance through the downregulation of IL-7, consequently resulting in the elevated susceptibility to bacterial infection. Moreover, specific Ltbr ablation in FRC during adulthood revealed that constant LTβR-dependent FRC-ILC interaction is required to maintain SILT structures and ILC populations. Taken together, our study unveils a critical intestinal FRC niche that secures protective gut immunity.
Project description:Subtypes of innate lymphoid cells (ILC), defined by effector function and transcription factor expression, have recently been identified. In the adult, ILC derive from common lymphoid progenitors in bone marrow, although transcriptional regulation of the developmental pathways involved remains poorly defined. TOX is required for development of lymphoid tissue inducer cells, a type of ILC3 required for lymph node organogenesis, and NK cells, a type of ILC1. We show here that production of multiple ILC lineages requires TOX, as a result of TOX-dependent development of common ILC progenitors. Comparative transcriptome analysis demonstrated failure to induce various aspects of the ILC gene program in the absence of TOX, implicating this nuclear factor as a key early determinant of ILC lineage specification.
Project description:The functions of innate lymphoid cells (ILCs) in immune system are increasingly appreciated, whereas the early development of ILCs in human remains elusive. In this study, we sorted humanhematopoietic stem progenitor cells, lymphoid progenitors, presumed ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 PCW,for single-cell RNA-sequencing, followed by computational analysis and functional validation. We delineated the early phase of ILC development, from hematopoietic stem progenitor cells to multipotent lymphoid progenitors and to ILC progenitors, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor alpha (IL-3RA) as the surface marker for the lymphoid progenitors with T cell, B cell and ILC potentials. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the shared proliferating characteristics of the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2-CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.
Project description:Innate lymphoid cells (ILC) in the small intestine govern immune homeostasis and protect the host against gut pathogens. While distinct cell-intrinsic signals have been identified that determine ILC development and differentiation, it has remained unclear which cell population regulates ILC sustenance. Using unbiased single cell RNA transcriptomic analysis of intestinal fibroblasts, we have identified a specialized Ccl19-expressing fibroblastic reticular cell (FRC) population that underpins solitary intestinal lymphoid tissue (SILT) structures including cryptopatches and isolated lymphoid follicles. Conditional ablation of lymphotoxin-β receptor (LTβR) signalling in SILT FRC impeded the maturation of isolated lymphoid follicles and blocked ILC maintenance through the downregulation of IL-7, consequently resulting in the elevated susceptibility to bacterial infection. Moreover, specific Ltbr ablation in FRC during adulthood revealed that constant LTβR-dependent FRC-ILC interaction is required to maintain SILT structures and ILC populations. Taken together, our study unveils a critical intestinal FRC niche that secures protective gut immunity.