Project description:Analysis of microbial community composition in arctic tundra and boreal forest soils using serial analysis of ribosomal sequence tags (SARST). Keywords: other
2004-01-12 | GSE949 | GEO
Project description:Fungal community across a tropical forest disturbance gradient
Project description:This dataset represents woody plants recorded in 16 1-ha forest plots in an elevational gradient in Madidi National Park, Bolivia, ranging from lowland Amazonian moist forest and lowland dry forest to the treeline of the Andean Altiplano. This work was carried out by David Henderson and Jonathan Myers (Washington University in St. Louis), Sebastian Tello (Missouri Botanical Garden and University of Missouri, St. Louis), and Brian Sedio (University of Texas at Austin and Smithsonian Tropical Research Institute).
Project description:Soil microbial community is a complex blackbox that requires a multi-conceptual approach (Hultman et al., 2015; Bastida et al., 2016). Most methods focus on evaluating total microbial community and fail to determine its active fraction (Blagodatskaya & Kuzyakov 2013). This issue has ecological consequences since the behavior of the active community is more important (or even essential) and can be different to that of the total community. The sensitivity of the active microbial community can be considered as a biological mechanism that regulates the functional responses of soil against direct (i.e. forest management) and indirect (i.e. climate change) human-induced alterations. Indeed, it has been highglihted that the diversity of the active community (analyzed by metaproteomics) is more connected to soil functionality than the that of the total community (analyzed by 16S rRNA gene and ITS sequencing) (Bastida et al., 2016). Recently, the increasing application of soil metaproteomics is providing unprecedented, in-depth characterisation of the composition and functionality of active microbial communities and overall, allowing deeper insights into terrestrial microbial ecology (Chourey et al., 2012; Bastida et al., 2015, 2016; Keiblinger et al., 2016). Here, we predict the responsiveness of the soil microbial community to forest management in a climate change scenario. Particularly, we aim: i) to evaluate the impacts of 6-years of induced drought on the diversity, biomass and activity of the microbial community in a semiarid forest ecocosystem; and ii) to discriminate if forest management (thinning) influences the resistance of the microbial community against induced drought. Furthermore, we aim to ascertain if the functional diversity of each phylum is a trait that can be used to predict changes in microbial abundance and ecosystem functioning.
2021-02-02 | PXD005447 | Pride
Project description:Tropical forest soil
| PRJNA1058721 | ENA
Project description:Soil bacterial community in sub/tropical forest from South China
Project description:These are the additional files that were not already in public repositories for this manuscript. These samples are negative ionization mode, organic matter metabolomics datasets from many distinct environments, including global cropland; dryland; late Pleistocene-aged permafrost; temperate and tropical forest soils; rivers and lakes; and ocean DOM.
| MSV000095785 | MassIVE
Project description:Responses of soil bacterial community to nitrogen addition in tropical forest