Project description:We analyzed the extracellular proteome of colistin-resistant Korean Acinetobacter baumannii (KAB) strains to identify proteome profiles that can be used to characterize extensively drug-resistant KAB strains.
Project description:Acinetobacter baumannii is a Gram-negative opportunistic pathogen that causes multiple infections, including pneumonia, bacteremia, and wound infections. Due to multiple intrinsic and acquired drug-resistance mechanisms, A. baumannii isolates are commonly multi-drug resistant and infections are notoriously difficult to treat. Therefore, it is important to identify mechanisms used by A. baumannii to survive stresses encountered during infection as a means of identifying new drug targets. In this study, we determined the transcriptional response of A. baumannii to hydrogen peroxide stress using RNASequencing. Upon exposure to hydrogen peroxide, A. baumannii differentially transcribes several hundred genes. In this study, we also determined the transcriptional profile of A. baumannii strains with the transcriptional regulators mumR or oxyR genetically inactivated and identified transcriptional differences between these strains and wild-type A. baumannii in response to hydrogen peroxide stress. In doing this, the function of A. baumannii OxyR in hydrogen peroxide stress resistance and regulation of genes required for hydrogen peroxide detoxification was defined. Moreover, the contribution of the uncharacterized regulator MumR to hydrogen peroxide stress resistance was also explored. This work reveals the transcriptome of an important human pathogen in the presence of hydrogen peroxide stress.
Project description:We performed RNAseq for gene expression analysis for six strains of Acinetobacter Baumannii isolated from blood samples (defined as strains 1, 2, 3, 4 and 6) of patients hospitalized at the University Hospital \\"San Giovanni di Dio e Ruggi d'Aragona\\" (Salerno, Italy)
Project description:Purpose: The goal of this study was to elucidate the collateral effects associated with OXA-23 overexpression on the Acinetobacter baumannii global transcriptome. Results: Besides the 99.73-fold increase in blaOXA-23 transcript upon IPTG induction, no other transcripts showed more than a 2-fold change compared to the wildtype control. This suggests that OXA-23 over expression to levels similarly observed in multi drug resistant A. baumannii clinical isolates does not effect the transcriptome.
Project description:The bacterial pathogen, Acinetobacter baumannii, is a leading cause of drug-resistant infections. Here, we investigated the potential of developing nanobodies that specifically recognize A. baumannii over other Gram-negative bacteria. Through generation and panning of a synthetic nanobody library, we identified several potential lead candidates. We demonstrate how incorporation of next generation sequencing analysis can aid in selection of lead candidates for further characterization. Using monoclonal phage display, we validated the binding of several lead nanobodies to A. baumannii. Subsequent purification and biochemical characterization revealed one particularly robust nanobody that broadly and specifically bound A. baumannii compared to other common drug resistant pathogens. These findings support the potentially for nanobodies to selectively target A. baumannii and the identification of lead candidates for possible future diagnostic and therapeutic development.
Project description:Calprotectin (CP) inhibits bacterial viability through extracellular chelation of transition metals. However, how CP influences general metabolism remains largely unexplored. We show here that CP restricts bioavailable Zn and Fe to the pathogen Acinetobacter baumannii, inducing an extensive multi-metal perturbation of cellular physiology. Detailed here are the RNA sequencing files of WT A. baumannii ATCC 17978 grown plus or minus recombinant human calprotectin.
Project description:We report the transcriptional expression from wild type, a ponA mutant, and lipooligosaccharide-deficient A. baumannii in order to understand the cellular changes after inactivation of lipid A biosynthesis. Among all strains, genes in the Localization Of Lipoprotein (Lol) transport pathway were upregulated. This study provides a framework to understand how some Acinetobacter baumannii strains can survive without lipid A and lipopolysaccharide/lipooligosaccharide.
Project description:A major reservoir for spread of the emerging pathogen Acinetobacter baumannii is hopsital surfaces, where bacteria persist in a desiccated state. To identify gene products influencing desiccation survival, a transposon sequencing (Tn-seq) screen was performed. Using this approach, we identified genes both positively and negatively impacting the desiccation tolerance of A. baumannii.