Project description:Cocaine use disorder represents a public health crisis with no FDA-approved medications for its treatment. A growing body of research has detailed the important connections between the brain and the resident population of bacteria in the gut, the gut microbiome in psychiatric disease models. Acute depletion of gut bacteria results in enhanced reward in a mouse cocaine place preference model, and repletion of bacterially-derived short-chain fatty acid (SCFA) metabolites reverses this effect. However, the role of the gut microbiome and its metabolites in modulating cocaine-seeking behavior after prolonged abstinence is unknown. Given that relapse prevention is the most clinically challenging issue in treating substance use disorders, studies examining the effects of microbiome manipulations in relapse-relevant models are critical. Here, Sprague-Dawley rats received either untreated water or antibiotics to deplete the gut microbiome and its metabolites. Rats were trained to self-administer cocaine and subjected to either within-session threshold testing to evaluate motivation for cocaine or 21 days of abstinence followed by a cue-induced cocaine-seeking task to model relapse behavior. Microbiome depletion did not affect cocaine acquisition on an FR1 schedule. However, microbiome-depleted subjects exhibited significantly enhanced motivation for low dose cocaine on a within-session threshold task. Similarly, microbiome depletion increased cue-induced cocaine-seeking following prolonged abstinence. In the absence of a normal microbiome, repletion of bacterially-derived SCFA metabolites reversed the behavioral and transcriptional changes associated with microbiome depletion. These findings suggest that gut bacteria, via their metabolites, are key regulators of drug-seeking behaviors, positioning the microbiome as a potential translational research target.
Project description:“Dysbiosis" of the maternal gut microbiome, in response to environmental challenges such as infection, altered diet and stress during pregnancy, has been increasingly associated with abnormalities in offspring brain function and behavior. However, whether the maternal gut microbiome regulates neurodevelopment in the absence of environmental challenge remains unclear. In addition, whether the maternal microbiome exerts such influences during critical periods of embryonic brain development is poorly understood. Here we investigate how depletion, and selective reconstitution, of the maternal gut microbiome influences fetal neurodevelopment in mice. Embryos from antibiotic-treated and germ-free dams exhibit widespread transcriptomic alterations in the fetal brain relative to conventionally-colonized controls, with reduced expression of several genes involved in axonogenesis. In addition, embryos from microbiome-depleted mothers exhibit deficient thalamocortical axons and impaired thalamic axon outgrowth in response to cell-extrinsic guidance cues and growth factors. Consistent with the importance of fetal thalamocortical axonogenesis for shaping neural circuits for sensory processing, restricted depletion of the maternal microbiome from pre-conception through mid-gestation yields offspring that exhibit tactile hyposensitivity in select sensorimotor behavioral tasks. Gnotobiotic colonization of antibiotic-treated dams with a limited consortium of spore-forming bacteria indigenous to the gut microbiome prevents abnormalities in fetal brain gene expression, fetal thalamocortical axonogenesis and adult tactile sensory behavior associated with maternal microbiome depletion. Metabolomic profiling reveals that the maternal microbiota regulates levels of numerous small molecules in the maternal serum as well as the brains of fetal offspring. Select microbiota-dependent metabolites – trimethylamine N-oxide, 5-aminovalerate, imidazole propionate, and hippurate – sufficiently promote axon outgrowth from fetal thalamic explants. Moreover, maternal supplementation with the metabolites during early gestation abrogates deficiencies in fetal thalamocortical axons and prevents abnormalities in tactile sensory behavior in offspring from microbiome-depleted dams. Altogether, these findings reveal that the maternal gut microbiome promotes fetal thalamocortical axonogenesis and select tactile sensory behaviors in mice, likely by signaling of microbially modulated metabolites to neurons in the developing brain.
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:Recent evidence has demonstrated that the gut microbiome has marked effects on neuronal function and behavior. Disturbances to microbial populations within the gut have been linked to myriad models of neuropsychiatric disorders. However, the role of the microbiome in substance use disorders remains understudied. Here we show that male mice with their gut microbiome depleted by nonabsorbable antibiotics (Abx) exhibit decreased formation of morphine conditioned place preference across a range of doses (2.5-15 mg/kg), have decreased locomotor sensitization to morphine, and demonstrate marked changes in gene expression within the nucleus accumbens (NAc) in response to high-dose morphine (20 mg/kg × 7 days). Replacement of short-chain fatty acid (SCFA) metabolites, which are reduced by microbiome knockdown, reversed the behavioral and transcriptional effects of microbiome depletion. This identifies SCFA as the crucial mediators of microbiome-brain communication responsible for the effects on morphine reward caused by microbiome knockdown. These studies add important new behavioral, molecular, and mechanistic insight to the role of gut-brain signaling in substance use disorders
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary transcription profiling data from the mouse hosts have also been deposited at ArrayExpress under accession number E-MTAB-3590 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3590/ ).
Project description:Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder with complex pathophysiology including both genetic and environmental factors. Recent evidence demonstrates the gut microbiome and its resultant metabolome can influence brain and behavior and have been implicated in ASD. To investigate gene by microbiome interactions in a model for genetic risk of ASD, we utilize mutant mice carrying a deletion of the ASD-associated Shank3 gene (Shank3KO). Shank3KO have altered microbiome composition and function at baseline in addition to social deficits. Further depletion of the microbiome with antibiotics exacerbates social deficits in Shank3KO, and results in transcriptional changes in the frontal cortex. Supplementation with the microbial metabolite acetate leads to reversal of social behavioral phenotypes even in mice with a depleted microbiome, and significantly alters transcriptional regulation in the prefrontal cortex. These results suggest a key role for the gut microbiome and the neuroactive metabolite acetate in regulating ASD-like behaviors.
Project description:Morphine and its pharmacological derivatives are the most prescribed analgesics for moderate to severe pain management. However, chronic use of morphine reduces pathogen clearance and induces bacterial translocation across the gut barrier. The enteric microbiome has been shown to play a critical role in the preservation of the mucosal barrier function and metabolic homeostasis. Here, we show for the first time, using bacterial 16s rDNA sequencing, that chronic morphine treatment significantly alters the gut microbial composition and induces preferential expansion of the gram-positive pathogenic and reduction of bile-deconjugating bacterial strains. A significant reduction in both primary and secondary bile acid levels was seen in the gut, but not in the liver with morphine treatment. Morphine induced microbial dysbiosis and gut barrier disruption was rescued by transplanting placebo-treated microbiota into morphine-treated animals, indicating that microbiome modulation could be exploited as a therapeutic strategy for patients using morphine for pain management. In this study, we establish a link between the two phenomena, namely gut barrier compromise and dysregulated bile acid metabolism. We show for the first time that morphine fosters significant gut microbial dysbiosis and disrupts cholesterol/bile acid metabolism. Changes in the gut microbial composition is strongly correlated to disruption in host inflammatory homeostasis13,14 and in many diseases (e.g. cancer/HIV infection), persistent inflammation is known to aid and promote the progression of the primary morbidity. We show here that chronic morphine, gut microbial dysbiosis, disruption of cholesterol/bile acid metabolism and gut inflammation; have a linear correlation. This opens up the prospect of devising minimally invasive adjunct treatment strategies involving microbiome and bile acid modulation and thus bringing down morphine-mediated inflammation in the host.