Project description:Sixty crossbred piglets (Duroc*Landrace*Yorkshire) weaned at the age of 21 days were maintained for one week and had free access to feed and water. During this week, all the piglets were scored for the severity of diarrhea. Diarrhea index was scored as follows: 1= hard feces; 2= no scours, feces of normal consistency; 3= mild scours, soft, partially formed feces; 4= moderate scours, loose, semi-liquid feces; 5= watery feces; as previously did Those piglets with a score of 4 or 5 for three continuous days were designated as diarrhea piglets, while those piglets with a score of 1 or 2 for three continuous days were designated as normal piglets..
Project description:BackgroundIn recent years, the wildlife/livestock interface has attracted increased attention due to disease transmission between wild and domestic animal populations. The ongoing spread of African swine fever (ASF) in European wild boar (Sus scrofa) emphasize the need for further understanding of the wildlife/livestock interface to prevent disease spill-over between the wild and domestic populations. Although wild boar may also act as a potential source for other infectious disease agents, ASF is currently the most severe threat from wild boar to domestic pigs. To gather information on the wild boar situation at commercial pig producing farms in Sweden, a digital questionnaire survey was distributed through the animal health services.ResultsMost pigs produced for commercial purposes in Sweden are raised without outdoor access. Of the 211 responding pig producers, 80% saw wild boar or signs of wild boar activity in the vicinity of their farm at least once during the year. Observations were significantly correlated with geographical region, but there was no correlation between farm characteristics (farm size, main type of production, outdoor access) and observed wild boar presence or proximity. However, a reported higher frequency of wild boar observations was positively correlated with the observations being made in closer proximity to the farm. Hunting and strategic baiting were the most common mitigation strategies used to keep wild boar at bay. Of the 14 farms raising pigs with outdoor access, 12 responded that these pigs could be raised solely indoors if needed. Pigs with outdoor access are required to be fenced in, but double fencing in these outdoor pig enclosures was not practiced by all. A perimeter fence surrounding any type of pig farm was very rare. More than half of the producers that grew crops with intended use for pigs reported crop damage by wild boar.ConclusionThis study shows that although pigs raised for commercial purposes in Sweden are, to a large extent, kept indoors the potential for indirect contact with wild boar exists and must be considered. Variable local situations regarding wild boar abundance may require an adaptive approach regarding biosecurity efforts.
Project description:Balanced chromosomal rearrangements, mainly reciprocal translocations, are considered to be the causative agent of several clinical conditions in farmed pigs, resulting in hypoprolificacy and economic losses. Literature suggests that reciprocal translocations are heritable and can occur de novo. The prevalence rate of these balanced structural rearrangements of chromosomes differs from country to country and varies between 0.5% and 3.3%. The Australian pig population is descendent of a small founder population and has since been a closed genetic group since the 1980s. Hence, any incident of reciprocal translocation along with the pedigree of boars that contribute sperm for artificial insemination has the potential to have an economic consequence. To date, there has been no published account for screening of reciprocal translocation associated with hypoprolificacy in the Australian pig population. In this study, we performed standard and molecular cytogenetic analyses to identify evidence of chromosome rearrangements and their association with hypoprolificacy in a representative 94 boar samples from a commercial nucleus herd. We identified three novel rearrangements between chromosomes 5 and 14, between chromosomes 9 and 10, and between chromosomes 10 and 12. In addition, we also detected a reciprocal translocation between chromosomes 3 and 16 that has previously been detected in pig herds in France. The prevalence rate was 6.38% within the samples used in this study. All four rearrangements were found to have an association with hypoprolificacy. Further study and routine monitoring will be necessary to identify any further rearrangements that will allow breeders to prevent the propagation of reciprocal translocations from generation to generation within the Australian pig population.