Project description:Transcription profiling by array of 10 days old Brassica rapa ssp. chinensis seedlings treated with 2mM methyl jasmonate by spraying and harvesting 48 hours past treatment
Project description:Clubroot, caused by Plasmodiophora Brassicae, is a serious soil-borne disease in worldwide. In recent years, progression of clubroot is rapid and serious in Shanghai, China. In this study, The inheritance of clubroot resistance (CR) were determined in pakchoi using F2 segregation population that were developed by crossing highly resistant line 'CR38' and susceptible line 'CS22'. Two novel QTLs, qBrCR38-1 and qBrCR38-2, was identified by BSA-seq (Bulked Segregant Sequencing) resistant to P. brassicae physiological race 7. Two significant peak qBrCR38-1 and qBrCR38-2 were observed by three statistical methods between interval of 19.7-20.6 Mb in chromosome A07 and 20.0-20.6 Mb in chromosome A08, respectively. In addition, Polymorphic SNPs identified within target regions were converted to kompetitive allele-specific PCR (KASP) assays. In target regions of qBrCR38-1 and qBrCR38-2, there were twenty SNP sites identified, eleven KASP markers of which are significantly associated to CR (P < 0.05). Seven candidate genes were identified and found to be involved in disease resistance (TIR-NBS-LRR proteins), defense responses of bacterium and fungi and biotic/abiotic stress response in the target regions harboring the two QTLs. Two novel QTLs and candidate genes identified from the present study provide insights into the genetic mechanism of CR in B.rapa, and the associated SNPs can be effectively used for marker-assisted breeding.
Project description:Clubroot is one of the most serious diseases affecting Brassicaceae plants worldwide. However, there is no effective control method for clubroot. Salicylic acid (SA) is a plant hormone that plays a critical role in plant defense. In our study, we found the disease severity of a clubroot-sensitive cultivar of pakchoi, Xinxiaqing, was reduced with 0.6mM exogenous SA after the infection of P. brassicae. To investigate the mechanism of SA-reduced disease severity against clubroot, then we analyzed the plant growth, alteration of antioxidant enzyme system, and related gene expression of Xinxiaqing. Results showed that the clubroot incidence rate and disease index were decreased after being treated with 0.6 mM exogenous SA. Furthermore, plant growth, reactive oxygen species (ROS) contents, and membrane lipid peroxidation were changed. The activities of antioxidant enzymes, including superoxide dismutase (SOD), ascorbic acid-peroxidase (APX), catalase (CAT), and glutathione reductase (GR), were increased. Additionally, the production rates of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2·-) were also inhibited. The expression levels of genes, encoding SOD, APX, CAT, and GR, were increased. By summering all results, we conclude that 0.6 mM SA contributes to the reduction of disease severity to clubroot by increasing the activities of antioxidant enzymes, abilities of osmotic regulation, and ROS scavenging to reduce the clubroot-induced damage in pakchoi.
Project description:The biotrophic protist Plasmodiophora brassicae causes serious damage to Brassicaceae crops grown worldwide. However, the molecular mechanism of the Brassica rapa response remains has not been determined. Long noncoding RNA and mRNA expression profiles in response to Plasmodiophora brassicae infection were investigated using RNA-seq on the Chinese cabbage inbred line C22 infected with P. brassicae. Approximately 5,193 mRNAs were significantly differentially expressed, among which 1,345 were upregulated and 3,848 were downregulated. The GO enrichment analysis shows that most of these mRNAs are related to the defense response. Meanwhile, 114 significantly differentially expressed lncRNAs were identified, including 31 upregulated and 83 downregulated. Furthermore, a total of 2,344 interaction relationships were detected between 1,725 mRNAs and 103 lncRNAs with a correlation coefficient greater than 0.8. We also found 15 P. brassicaerelated mRNAs and 16 lncRNA interactions within the correlation network. The functional annotation showed that 15 mRNAs belong to defense response proteins (66.67%), protein phosphorylation (13.33%), root hair cell differentiation (13.33%) and regulation of salicylic acid biosynthetic process (6.67%). KEGG annotation showed that the vast majority of these genes are involved in the biosynthesis of secondary metabolism pathways and plant-pathogen interactions. These results provide a new perspective on lncRNA-mRNA network function and help to elucidate the molecular mechanism of P. brassicae infection.
Project description:BACKGROUND:Leaf color is a major agronomic trait, which has a strong influence on crop yields. Isolating leaf color mutants can represent valuable materials for research in chlorophyll (Chl) biosynthesis and metabolism regulation. RESULTS:In this study, we identified a stably inherited yellow leaf mutant derived from 'Huaguan' pakchoi variety via isolated microspore culture and designated as pylm. This mutant displayed yellow leaves after germination. Its etiolated phenotype was nonlethal and stable during the whole growth period. Its growth was weak and its hypocotyls were markedly elongated. Genetic analysis revealed that two recessive nuclear genes, named py1 and py2, are responsible for the etiolation phenotype. Bulked segregant RNA sequencing (BSR-Seq) showed that py1 and py2 were mapped on chromosomes A09 and A07, respectively. The genes were single Mendelian factors in F3:4 populations based on a 3:1 phenotypic segregation ratio. The py1 was localized to a 258.3-kb interval on a 34-gene genome. The differentially expressed gene BraA09004189 was detected in the py1 mapping region and regulated heme catabolism. One single-nucleotide polymorphism (SNP) of BraA09004189 occurred in pylm. A candidate gene-specific SNP marker in 1520?F3:4 yellow-colored individuals co-segregated with py1. For py2, 1860 recessive homozygous F3:4 individuals were investigated and localized py2 to a 4.4-kb interval. Of the five genes in this region, BraA07001774 was predicted as a candidate for py2. It encoded an embryo defective 1187 and a phosphotransferase related to chlorophyll deficiency and hypocotyl elongation. One SNP of BraA07001774 occurred in pylm. It caused a single amino acid mutation from Asp to Asn. According to quantitative real-time polymerase chain reaction (qRT-PCR), BraA07001774 was downregulated in pylm. CONCLUSIONS:Our study identified a Chl deficiency mutant pylm in pakchoi. Two recessive nuclear genes named py1 and py2 had a significant effect on etiolation. Candidate genes regulating etiolation were identified as BraA09004189 and BraA07001774, respectively. These findings will elucidate chlorophyll metabolism and the molecular mechanisms of the gene interactions controlling pakchoi etiolation.
Project description:Xylem sap of young cabbage plantlets was recovered from root pressure exudation and used as a growth medium for the vascular pathogen Xanthomonas campestris pv campestris, the causative agent of the black rot of Brassicaceae.
Project description:Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is one of the most devastating diseases of cruciferous crops worldwide. The pathogen infects and multiplies in plant vascular tissues and, as the disease progresses, the veins of infected tissues turn black and characteristic V-shaped lesions appear along the margins of leaves.The aim of this work is to identify differentially expressed genes from Brassica oleracea during early infection by Xcc, in an attempt to identify proteins related to resistance. Cabbge seedlings were inoculated with Xanthomonas campestris pv campestris (Xcc) suspension and cabbage gene expression at 6h., 24h. And 48h. After inoculation was assessed with help of Brassica 95k EST microarray chip.
Project description:We performed a transcriptomic analysis of the necrotrophic bacteria Xanthomonas campestris pv. campestris exposed to two different isothiocyanates (allyl-isothiocyanate and indol-3-carbinol), searching for mechanisms of adaptation and detoxification of these chemicals.