Project description:This series of microarrays compares gene expression by the bacterial pathogen Proteus mirabilis when the transcriptional regulator mrpJ is deleted or induced to levels found during experimental urinary tract infection. The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections. Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for successful disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects a wide array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking expression levels that occur during UTI leads to differential expression of 217 genes related to, among others, bacterial virulence, type VI secretion and metabolism. We probed the molecular mechanism of transcriptional regulation through MrpJ using reporter assays and chromatin immunoprecipitation (ChIP). Two virulence-associated target genes, the flagellar master regulator flhDC and mrp itself, appear to be regulated through a binding site proximal to the transcriptional start, complemented by a more distantly situated enhancer site. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observe that mrpJ is widely conserved in a collection of recent clinical isolates, leading us to conclude that our results elucidate an unanticipated role of MrpJ as a global regulator of P. mirabilis virulence.
Project description:This series of microarrays compares gene expression by the bacterial pathogen Proteus mirabilis when the transcriptional regulator mrpJ is deleted or induced to levels found during experimental urinary tract infection. The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections. Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for successful disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects a wide array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking expression levels that occur during UTI leads to differential expression of 217 genes related to, among others, bacterial virulence, type VI secretion and metabolism. We probed the molecular mechanism of transcriptional regulation through MrpJ using reporter assays and chromatin immunoprecipitation (ChIP). Two virulence-associated target genes, the flagellar master regulator flhDC and mrp itself, appear to be regulated through a binding site proximal to the transcriptional start, complemented by a more distantly situated enhancer site. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observe that mrpJ is widely conserved in a collection of recent clinical isolates, leading us to conclude that our results elucidate an unanticipated role of MrpJ as a global regulator of P. mirabilis virulence. Four biological replicates were analyzed for each set of arrays (P. mirabilis HI4320 wild type vs. ΔmrpJ, and vector pLX3607 vs. mrpJ plasmid pLX3805).
Project description:Proteus mirabilis is a leading cause of catheter-associated urinary tract infections (UTIs) and urolithiasis. The transcriptional regulator MrpJ inversely modulates two critical aspects of P. mirabilis UTI progression: fimbria-mediated attachment to the urinary tract, and flagella-mediated motility. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) was used for the first time in a CAUTI pathogen to probe for in vivo direct targets of MrpJ. ChIP-seq revealed 81 78 direct MrpJ targets, including genes for motility, fimbriae and a type VI secretion system (T6SS), and the putative MrpJ binding sequence ACnCnnnnnnnGnGT.
Project description:The human gut acts as the main reservoir of microbes and a relevant source of life-threatening infections, especially in immunocompromised patients. There, the opportunistic fungal pathogen Candida albicans adapts to the host environment and additionally interacts with residing bacteria. We investigated fungal-bacterial interactions by coinfecting enterocytes with the yeast Candida albicans and the Gram-negative bacterium Proteus mirabilis resulting in enhanced host cell damage. This synergistic effect was conserved across different P. mirabilis isolates and occurred also with non-albicans Candida species and C. albicans mutants defective in filamentation or candidalysin production. Using bacterial deletion mutants, we identified the P. mirabilis hemolysin HpmA to be the key effector for host cell destruction. Spatially separated coinfections demonstrated that synergism between Candida and Proteus is induced by contact, but also by soluble factors. Specifically, we identified Candida-mediated glucose consumption and farnesol production as potential triggers for Proteus virulence. In summary, our study demonstrates that coinfection of enterocytes with C. albicans and P. mirabilis can result in increased host cell damage which is mediated by bacterial virulence factors as a result of fungal niche modification via nutrient consumption and production of soluble factors. This supports the notion that certain fungal-bacterial combinations have the potential to result in enhanced virulence in niches such as the gut and might therefore promote translocation and dissemination.
Project description:Swarming motility by the urinary tract pathogen Proteus mirabilis has been a long-studied but little understood phenomenon. On agar, a P. mirabilis colony grows outward in a bull's-eye pattern formed by consecutive waves of rapid swarming followed by consolidation into shorter cells. To examine differential gene expression in these growth phases, a microarray was constructed based on the completed genome sequence and annotation. RNA was extracted from broth-cultured, swarming, and consolidation-phase cells to assess transcription during each of these growth states. A total of 587 genes were differentially expressed in broth-cultured cells versus swarming cells, and 527 genes were differentially expressed in broth-cultured cells versus consolidation-phase cells (consolidate). Flagellar genes were highly upregulated in both swarming cells and consolidation-phase cells. Fimbriae were downregulated in swarming cells, while genes involved in cell division and anaerobic growth were upregulated in broth-cultured cells. Direct comparison of swarming cells to consolidation-phase cells found that 541 genes were upregulated in consolidate, but only nine genes were upregulated in swarm cells. Genes involved in flagellar biosynthesis, oligopeptide transport, amino acid import and metabolism, cell division, and phage were upregulated in consolidate. Mutation of dppA, oppB, and cysJ, upregulated during consolidation compared to during swarming, revealed that although these genes play a minor role in swarming, dppA and cysJ are required during ascending urinary tract infection. Swarming on agar to which chloramphenicol had been added suggested that protein synthesis is not required for swarming. These data suggest that the consolidation phase is a state in which P. mirabilis prepares for the next wave of swarming.
Project description:The Lrp/AsnC family of transcription factors links gene regulation to metabolism in bacteria and archaea. Members of this family, collectively, respond to a wide range of amino acids as coregulators. In Escherichia coli, Lrp regulates over 200 genes directly and is well known to respond to leucine and, to a somewhat lesser extent, alanine. We focused on Lrp from Proteus mirabilis and E. coli, orthologs with 98% identity overall and identical helix-turn-helix motifs, for which a previous study nevertheless found functional differences. Sequence differences between these orthologs, within and adjacent to the amino acid-responsive RAM domain, led us to test for differential sensitivity to coregulatory amino acids. In the course of this investigation, we found, via in vivo reporter fusion assays and in vitro electrophoretic mobility shift experiments, that E. coli Lrp itself responded to a broader range of amino acids than was previously appreciated. In particular, for both the E. coli and P. mirabilis orthologs, Lrp responsiveness to methionine was similar in magnitude to that to leucine. Both Lrp orthologs are also fairly sensitive to Ile, His, and Thr. These observations suggest that Lrp ties gene expression in the Enterobacteriaceae rather extensively to physiological status, as reflected in amino acid pools. These findings also have substantial implications for attempts to model regulatory architecture from transcriptome measurements or to infer such architecture from genome sequences, and they suggest that even well-studied regulators deserve ongoing exploration.
Project description:Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Project description:Swarming colonies of independent Proteus mirabilis isolates recognize each other as foreign and do not merge together, whereas apposing swarms of clonal isolates merge with each other. Swarms of mutants with deletions in the ids gene cluster do not merge with their parent. Thus, ids genes are involved in the ability of P. mirabilis to distinguish self from nonself. Here we have characterized expression of the ids genes. We show that idsABCDEF genes are transcribed as an operon, and we define the promoter region upstream of idsA by deletion analysis. Expression of the ids operon increased in late logarithmic and early stationary phases and appeared to be bistable. Approaching swarms of nonself populations led to increased ids expression and increased the abundance of ids-expressing cells in the bimodal population. This information on ids gene expression provides a foundation for further understanding the molecular details of self-nonself discrimination in P. mirabilis.
Project description:Pericarditis means inflammation in the pericardial sac. Pericarditis is divided into three categories based on morphology, including fibrinous, purulent, and constrictive. In the present study, a 7-month-old male Ghezel breed sheep was examined for low weighting rate for three months. Tachypnea, tachycardia, heart friction sound, absence of fever and normal appetite were recorded in the clinical examination. In the patient's history, there was a history of perforated chest trauma behind the left scapula about three months ago. After the echocardiography examination and bacteriology procedures, purulent pericarditis caused by Proteus mirabilis was diagnosed. The bacterium was analysed using genome sequencing and new strain called Abhar114 was diagnosed. This is the first report of pericarditis caused by Proteus mirabilis in sheep.