Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:Human mucosal-luminal interface (MLI) samples were collected from 8 different children and bacterial cells were harvest for metaproteomic analysis for understanding the MLI microbiota functions.
Project description:The postnatal period is one of the important windows for developing the gastrointestinal tract's structure-function and associated mucosal immunity. Recent studies suggest a promising contribution of gut microbiota in maintaining host health, immunity, and gut development. However, the function of postnatal gut microbiota dynamics concerning intestinal mucosal development needs to be better understood. To decipher the causal role of gut microbiota on barrier integrity and intestinal epithelium development, we executed an antibiotic-mediated perturbation and tracked the kinetics in postnatal mice. We observed a postnatal age-related impact of antibiotic-mediated gut microbiota perturbation with a substantial decrease in total bacterial load on P14D and also in the barrier integrity and IECs marker. To enhance our knowledge of the mechanisms behind this, we employed a global transcriptomics approach to see the alterations in the mucosal innate immunity and other relevant pathways.
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humans’ age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports