Project description:Wurfbainia villosa, which belongs to the huge family Zingiberaceae, is used in the clinic for the treatment of spleen and stomach diseases in southern China. The complete chloroplast genome of W. villosa was sequenced and analyzed using next-generation sequencing technology in the present work. The results showed that the W. villosa chloroplast genome is a circular molecule with 163,608 bp in length. It harbors a pair of inverted repeat regions (IRa and IRb) of 29,820 bp in length, which separate the large single copy (LSC, 88,680 bp) region and the small single copy (SSC, 15,288 bp) region. After annotation, 134 genes were identified in this plastome in total, comprising of 87 protein-coding genes, 38 transfer RNA genes, 8 ribosomal RNA genes and one pseudogene (ycf1). Codon usage, RNA editing sites and single/long sequence repeats were investigated to understand the structural characteristics of the W. villosa chloroplast genome. Furthermore, IR contraction and expansion were analyzed by comparison of complete chloroplast genomes of W. villosa and four other Zingiberaceae species. Finally, a phylogeny study based on the chloroplast genome of W. villosa, along with that of 15 different species, was conducted to further investigate the relationship among these lineages. Overally, our results represented the first insight into the chloroplast genome of W. villosa, and could serve as a significant reference for species identification, genetic diversity analysis and phylogenetic research between W. villosa and other species within Zingiberaceae.