Project description:Mutations affecting the RAS-MAPK pathway frequently occur in relapse neuroblastoma tumors, which suggests that activation of this pathway is associated with a more aggressive phenotype. To explore this hypothesis we generated several model systems to define a neuroblastoma RAS-MAPK pathway signature. We could show that activation of this pathway in primary tumors indeed correlates with poor survival and is associated with known activating mutations in ALK and other RAS-MAPK pathway genes. From integrative analysis we could show that mutations in PHOX2B, CIC and DMD are also associated with an activated RAS-MAPK pathway. Mutation of PHOX2B and deletion of CIC in neuroblastoma cell lines induces activation of the RAS-MAPK pathway. This activation was independent of phosphorylated ERK in the CIC knock out systems. Furthermore, deletion of CIC causes a significant increase in tumor growth in vivo. These results show that the RAS-MAPK pathway is involved in tumor progression, and establish CIC as a powerful tumor suppressor that functions downstream of this pathway in neuroblastoma.
Project description:Neuroblastoma is a pediatric tumor of the sympathetic nervous system. MYCN (V-myc myelocytomatosis viral-related oncogene, neuroblastoma derived [avian]) is amplified in 20% of neuroblastomas, and these tumors carry a poor prognosis. However, tumors without MYCN amplification also may have a poor outcome. Here, we identified downstream targets of MYCN by shRNA-mediated silencing MYCN in neuroblastoma cells. From these targets, 157 genes showed an expression profile correlating with MYCN mRNA levels in NB88, a series of 88 neuroblastoma tumors, and therefore represent in vivo relevant MYCN pathway genes. This 157-gene signature identified very poor prognosis tumors in NB88 and independent neuroblastoma cohorts and was more powerful than MYCN amplification or MYCN expression alone. Remarkably, this signature also identified poor outcome of a group of tumors without MYCN amplification. Most of these tumors have low MYCN mRNA levels but high nuclear MYCN protein levels, suggesting stabilization of MYCN at the protein level. One tumor has an MYC amplification and high MYC expression. Chip-on-chip analyses showed that most genes in this signature are directly regulated by MYCN. MYCN induces genes functioning in cell cycle and DNA repair while repressing neuronal differentiation genes. The functional MYCN-157 signature recognizes classical neuroblastoma with MYCN amplification, as well as a newly identified group marked by MYCN protein stabilization.
Project description:RAS mutations are frequently found among AML patients, generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We previously showed that treatment of AML patients with high-dose cytarabine (HDAC) is preferentially beneficial for those with an oncogenic RAS mutation. By applying a murine AML model, we could ascribe this effect to a RAS-driven, p53-dependent induction of differentiation. Here, we sought to confirm the correlation between RAS status and differentiation of blasts obtained from AML patients. The expression signature of primary AML blasts expressing oncogenic RAS where compared to blasts with wtRAS. Blasts where obtained from peripheral blood or bone marrow samples from patients with CBFbeta-MYH11 translocations and with or without an additional NRAS point mutation. As a reference, the Kasumi-1 acute myeloid leukemia cell line was used.
Project description:K-Ras mutations occur frequently in epithelial cancers. Using shRNAs to deplete K-Ras in lung and pancreatic cancer cell lines harboring K-Ras mutations, two classes were identified—lines that do or do not require K-Ras to maintain viability. Comparing these two classes of cancer cells revealed a gene expression signature in K-Ras-dependent cells, associated with a well-differentiated epithelial phenotype, which was also seen in primary tumors. Several of these genes encode pharmacologically tractable proteins, such as Syk and Ron kinases and integrin beta6, depletion of which induces epithelial-mesenchymal transformation (EMT) and apoptosis specifically in K-Ras-dependent cells. These findings indicate that epithelial differentiation and tumor cell viability are associated, and that EMT regulators in “K-Ras-addicted” cancers represent candidate therapeutic targets.
Project description:In this dataset, we report the analysis by RNA-sequencing (RNA-seq) of the transcriptional profile of neuroblastoma cell lines at baseline and after treatment with 13-cis-retinoic acid. Data from this study validated Boolean Implication Network derived differentiation signature in neuroblastoma. Our differentiation signature included a cluster of genes involved in intracellular signaling and growth factor receptor trafficking pathways that is strongly associated with neuroblastoma differentiation, and we validated the associations of UBE4B, a gene within this cluster, with neuroblastoma cell and tumor differentiation. Our findings demonstrate that Boolean network analyses of symmetric and asymmetric gene expression relationships can identify novel genes and pathways relevant for neuroblastoma tumor differentiation that could represent potential therapeutic targets.
Project description:To gain insight into the differential signaling pathways triggered in N-RAS-/- versus N-RAS+/+ mice during liver injury and fibrosis, we performed microarray analyses of livers 28 days after CCl4 treatment and BDL surgery, respectively. Our findings suggested that increased cell proliferation and matrix deposition as well as loss of cell homeostasis were characteristic of N-RAS-/- after experimental fibrosis. We used microarrays to detail the global programme of gene expression underlying CCl4 and BDL challenge,
Project description:K-Ras mutations occur frequently in epithelial cancers. Using shRNAs to deplete K-Ras in lung and pancreatic cancer cell lines harboring K-Ras mutations, two classes were identified—lines that do or do not require K-Ras to maintain viability. Comparing these two classes of cancer cells revealed a gene expression signature in K-Ras-dependent cells, associated with a well-differentiated epithelial phenotype, which was also seen in primary tumors. Several of these genes encode pharmacologically tractable proteins, such as Syk and Ron kinases and integrin beta6, depletion of which induces epithelial-mesenchymal transformation (EMT) and apoptosis specifically in K-Ras-dependent cells. These findings indicate that epithelial differentiation and tumor cell viability are associated, and that EMT regulators in “K-Ras-addicted” cancers represent candidate therapeutic targets. Expression analysis: 40 Samples representing K-Ras mutant cancer cell lines derived from various tissue types were hybridized to the Affymetrix GeneChip Human X3P Array. Copy number analysis: 10 samples representing K-Ras mutant cancer cell lines were hybridized to the Affymetrix Mapping 500K Set Arrays (250K_Nsp_SNP and 250K_Sty2_SNP). Reference data included 63 randomly chosen female samples (supplementary file Sing_etal_CopyNumber_NormalSamples.txt) from the HapMap project Affy 500K SNP data (http://www.hapmap.org/downloads/raw_data/affy500k).
Project description:Gene expression data from BE(2)-C cells treated in triplicate with either vehicle (DMSO), 5 μM all-trans retinoic acid (ATRA), 1 mM valproic acid (VPA), or 5 μM ATRA + 1 mM VPA for 6, 24, or 72 hours. Genome-wide expression profiling was performed using Affymetrix U133A microarrays. While cytotoxic chemotherapy remains the hallmark of cancer treatment, intensive regimens fall short in many malignancies, including high-risk neuroblastoma. One alternative strategy is to therapeutically promote tumor differentiation. We created a gene expression signature to measure neuroblast maturation, adapted it to a high-throughput platform, and screened a diversity oriented synthesis-generated small-molecule library for differentiation inducers. We identified BRD8430, containing a nine-membered lactam, an ortho-amino anilide functionality, and three chiral centers, as a selective Class I histone deacetylase (HDAC) inhibitor (HDAC1 > 2 > 3). Further investigation demonstrated that selective HDAC1/HDAC2 inhibition using compounds or RNA interference induced differentiation and decreased viability in neuroblastoma cell lines. Combined treatment with 13-cis retinoic acid augmented these effects and enhanced activation of retinoic acid signaling. Therefore, by applying a chemical genomic screening approach we identified selective HDAC1/HDAC2 inhibition as a strategy to induce neuroblastoma differentiation.
Project description:Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system with diverse clinical behaviors. Even with multimodal therapies, high-risk neuroblastoma has an unfavorable outcome irrespective of MYCN amplification, a well-established oncogenic driver in neuroblastoma pathogenesis, and its genetic heterogeneity has largely impeded efforts to correlate molecular targets with biological consequences for more effective treatment strategies. Here, using a gene expression-based approach, we identified the FDA-approved anthelmintic niclosamide as a potential anti-neuroblastoma drug. By combining the gene expression signature associated with high-risk neuroblastoma and the recurrent drug−transcript relationships inferred from up to one million perturbational gene expression profiles, our algorithm predicted effective therapeutic candidates by evaluating the extent to which a given compound or their combinations could ‘reverse’ the high-risk signature. Furthermore, we performed quantitative polymerase chain reaction (qPCR) to validate top five candidate reverse genes which are involved in DNA replication, including cyclin A2 (CCNA2), minichromosome maintenance 10 replication initiation factor (MCM10), ERCC excision repair 6 like, spindle assembly checkpoint helicase (ERCC6L), kinesin family member 20A (KIF20A), and RuvB like AAA ATPase 1 (RUVBL1). Indeed, those five genes were downregulated in niclosamide-treated cells, indicating niclosamide suppressed DNA replication and then inhibited cell proliferation. Using cell proliferation and clonogenic assays as well as flow cytometry, we determined the cytotoxic effects of niclosamide in MYCN-amplified SK-N-DZ and non-amplified SK-N-AS cells. The results showed that niclosamide could effectively reduce not only cell proliferation and colony formation but also trigger cell cycle arrest and apoptosis. Moreover, we conducted human tumor xenografts in a nude mice model to evaluate the in vivo efficacy of niclosamide and found that it significantly suppressed tumor growth and prolonged survival rate, but doesn’t cause organ damage and change body weight. To explore the molecular mechanism of niclosamide, stable-isotope dimethyl labeling strategy for quantitative proteomics was performed on both cell-based or xenograft-based MYCN-amplified SK-N-DZ and MYCN-nonamplified SK-N-AS models. We confirmed niclosamide not only mediated the function of mitochondrial electron transport chain but also the other functions in high risk neuroblastoma cell lines and xenografts. The results suggest that our developed expression-based strategy is useful for drug discovery and provides the possibility of repurposing the anthelminthic drug niclosamide for treating high-risk neuroblastoma therapy.