Project description:Background: The Malnad Gidda are unique dwarf Bos indicus cattle native to heavy rainfall Malnad and coastal areas of Karnataka in India. These cattle are highly adapted to harsh climatic conditions and are more resistant to Foot and Mouth disease as compared to other breeds of B.indicus. Since the first genome reference became available from B.taurus Hereford breed, only a few other breeds have been genotyped using high-throughput platforms. Also despite the known reports on high diversity within indicine breeds as compared to taurine breeds, only one draft genome of Nellore and horn transcriptome of Kankrej breed were sequenced at base level resolution. Because of the special characteristics Malnad Gidda possess, it becomes the choice of breed among many indicine cows to study at molecular level and genotyping. Results: Sequencing mRNA from the PBMCs isolated from blood of one selected Malnad Gidda bull resulted in generation of 55 million paired-end reads of 100bp length. Raw sequencing data is processed to trim the adaptor and low quality bases, and are aligned against the whole genome and transcript assemblies of Bos taurus UMD 3.1 and Bos indicus (Nellore breed) respectively. About 72% of the sequenced reads from our study could be mapped against the B.taurus genome where as only 41% of reads could be mapped against the Bos indicus transcript assembly. Transcript assembly from the alignment carried out against the annotated B.taurus UMD 3.1 genome resulted in identification of ~10,000 genes with significant expression (FPKM>1). In a similar analysis against the B.indicus Kankrej assembled transcripts we could identify only ~6,000 transcripts. From the variant analysis of the sequencing data we found ~10,000 SNPs in coding regions among which ~9,000 are novel and ~6,400 are amino acid changing. Conclusions: For the first time we have genotyped and explored the transcriptome of B.indicus Malnad Gidda breed. A comparative analysis of mapping the RNA-Seq data against the available reference genome and transcript sequences is demonstrated. An enhanced utility of transcript sequencing could be achieved by improving or completing the sequence assembly of any B.indicus breed to better characterize the indicine breeds for productivity features and selective breeding.
Project description:Larvae of the pest Protaetia brevitarsis are used to treat infections in traditional Chinese medicine. However, genomic information about this non-model species is currently lacking. To better understand the fundamental biology of this non-model species, its transcriptome was obtained using next generation sequencing and then analyzed. A total of 7.62 Gb of clean reads were obtained, which were assembled into 169,087 transcripts corresponding to 142,000 annotated unigenes. These unigenes were functionally classified according to Gene Ontology (GO), euKaryotic Ortholog Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. A total of 41,921 unigenes were assigned to 56 GO terms, 21,454 unigenes were divided among 26 KOG categories, and 16,368 unigenes were assigned to 32 KEGG pathways. In addition, 19,144 simple sequence repeats (SSRs) were identified. Furthermore, several kinds of natural antimicrobial peptides and proteins, 4 histones with potential antimicrobial activity, and 41 potential antimicrobial peptide sequences were identified. These data are the first reported whole transcriptome sequence of P. brevitarsis larvae, which represents a valuable genomic resource for studying this species, thus promoting the utilization of its medical potential.