Project description:Staphylococcus aureus is a leading cause of hospital-associated infections. In addition, highly virulent strains of methicillin-resistant S. aureus (MRSA) are currently spreading outside health care settings. Survival in the human host is largely defined by the ability of S. aureus to resist mechanisms of innate host defense, of which antimicrobial peptides form a key part especially on epithelia and in neutrophil phagosomes. Here we demonstrate that the antimicrobial-peptide sensing system aps of the standard community-associated MRSA strain MW2 controls resistance to cationic antimicrobial peptides. The core of aps-controlled resistance mechanisms comprised the D-alanylation of teichoic acids (dlt operon), the incorporation of cationic lysyl-phosphatidylglycerol (L-PG) in the bacterial membrane (mprF), and the vraF/vraG putative antimicrobial peptide transporter. Further, the observed increased production of L-PG under the influence of cationic antimicrobial peptides was accompanied by the up-regulation of lysine biosynthesis. In noticeable difference to the aps system of S. epidermidis, only selected antimicrobial peptides strongly induced the aps response. Heterologous complementation with the S. epidermidis apsS gene indicated that this is likely caused by differences in the short extracellular loop of ApsS that interacts with the inducing antimicrobial peptide. Our study shows that the antimicrobial peptide sensor system aps is functional in the important human pathogen S. aureus, significant interspecies differences exist in the induction of the aps gene regulatory response, and aps inducibility is clearly distinguishable from effectiveness towards a given antimicrobial peptide. Keywords: Wild type control vs treated vs mutant Wild type untreated in triplicate is compared to wild type treated in triplicate along with three mutants in triplicate with and without treatment of indolicidin, totalling 30 samples
Project description:Staphylococcus aureus is a leading cause of hospital-associated infections. In addition, highly virulent strains of methicillin-resistant S. aureus (MRSA) are currently spreading outside health care settings. Survival in the human host is largely defined by the ability of S. aureus to resist mechanisms of innate host defense, of which antimicrobial peptides form a key part especially on epithelia and in neutrophil phagosomes. Here we demonstrate that the antimicrobial-peptide sensing system aps of the standard community-associated MRSA strain MW2 controls resistance to cationic antimicrobial peptides. The core of aps-controlled resistance mechanisms comprised the D-alanylation of teichoic acids (dlt operon), the incorporation of cationic lysyl-phosphatidylglycerol (L-PG) in the bacterial membrane (mprF), and the vraF/vraG putative antimicrobial peptide transporter. Further, the observed increased production of L-PG under the influence of cationic antimicrobial peptides was accompanied by the up-regulation of lysine biosynthesis. In noticeable difference to the aps system of S. epidermidis, only selected antimicrobial peptides strongly induced the aps response. Heterologous complementation with the S. epidermidis apsS gene indicated that this is likely caused by differences in the short extracellular loop of ApsS that interacts with the inducing antimicrobial peptide. Our study shows that the antimicrobial peptide sensor system aps is functional in the important human pathogen S. aureus, significant interspecies differences exist in the induction of the aps gene regulatory response, and aps inducibility is clearly distinguishable from effectiveness towards a given antimicrobial peptide. Keywords: Wild type control vs treated vs mutant
Project description:Analysis of undifferentiated keratinocytes or differentiated keratinocytes stimulated with or without human cathelicidin antimicrobial peptide (CAMP) LL37. Results provide insight into the biological effects of CAMP on human keratinocytes. NHEKs were divided into two groups; low calcium (0.05 mM) and high calcium condition (1.6 mM). Then keratinocytes were stimulated with human cathelicidin antimicrobial peptide LL37 at 0, 2.56, and 7.68 M-NM-<M for 12 h to 24 h.
Project description:To survive during colonization or infection of the human body, microorganisms must defeat antimicrobial peptides, which represent a key component of innate host defense in phagocytes and on epithelia. However, is not known how the clinically important group of Gram-positive bacteria sense antimicrobial peptides to coordinate a directed defensive response. By determining the genome-wide gene regulatory response to human beta defensin 3 in the nosocomial pathogen Staphylococcus epidermidis, we discovered an antimicrobial peptide sensor system that controls major specific resistance mechanisms to antimicrobial peptides and is unrelated to the Gram-negative PhoP/PhoQ system. Wild type untreated in triplicate is compared to wild type treated in triplicate along with three mutants in triplicate with and without treatment of human beta defensin 3, totalling 30 samples
Project description:To survive during colonization or infection of the human body, microorganisms must defeat antimicrobial peptides, which represent a key component of innate host defense in phagocytes and on epithelia. However, is not known how the clinically important group of Gram-positive bacteria sense antimicrobial peptides to coordinate a directed defensive response. By determining the genome-wide gene regulatory response to human beta defensin 3 in the nosocomial pathogen Staphylococcus epidermidis, we discovered an antimicrobial peptide sensor system that controls major specific resistance mechanisms to antimicrobial peptides and is unrelated to the Gram-negative PhoP/PhoQ system. Keywords: Wild type control vs treated vs mutant
Project description:Antimicrobial peptide ChMAP-28 is a peptide of innate immunity of the goat Capra hircus. The goal of this research was to evaluate possible changes in the molecular signaling pathways in HL-60 leukemia cells and also to correlate this effect with the cytotoxic activity of the peptide.
Project description:Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides, since the phenotype, death, selects against itself, and has caused a scientific bottleneck confining research to only a few naturally occurring classes of antimicrobial peptides. We have used this seeming dissonance to develop Surface Localized Antimicrobial displaY (SLAY); a platform that allows screening of unlimited numbers of peptides of any length, composition, and structure in a single tube for antimicrobial activity. Using SLAY, we screened ~800,000 random peptide sequences for antimicrobial function and identified thousands of active sequences doubling the number of known antimicrobial sequences. SLAY hits present with different potential mechanisms of peptide action and access to areas of antimicrobial physicochemical space beyond what nature has evolved.
Project description:Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides, since the phenotype, death, selects against itself, and has caused a scientific bottleneck confining research to only a few naturally occurring classes of antimicrobial peptides. We have used this seeming dissonance to develop Surface Localized Antimicrobial displaY (SLAY); a platform that allows screening of unlimited numbers of peptides of any length, composition, and structure in a single tube for antimicrobial activity. Using SLAY, we screened ~800,000 random peptide sequences for antimicrobial function and identified thousands of active sequences doubling the number of known antimicrobial sequences. SLAY hits present with different potential mechanisms of peptide action and access to areas of antimicrobial physicochemical space beyond what nature has evolved.